Products on -modules

Author:
N. P. Strickland

Journal:
Trans. Amer. Math. Soc. **351** (1999), 2569-2606

MSC (1991):
Primary 55T25

DOI:
https://doi.org/10.1090/S0002-9947-99-02436-8

Published electronically:
March 1, 1999

MathSciNet review:
1641115

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Elmendorf, Kriz, Mandell and May have used their technology of modules over highly structured ring spectra to give new constructions of -modules such as , and so on, which makes it much easier to analyse product structures on these spectra. Unfortunately, their construction only works in its simplest form for modules over that are concentrated in degrees divisible by ; this guarantees that various obstruction groups are trivial. We extend these results to the cases where or the homotopy groups are allowed to be nonzero in all even degrees; in this context the obstruction groups are nontrivial. We shall show that there are never any obstructions to associativity, and that the obstructions to commutativity are given by a certain power operation; this was inspired by parallel results of Mironov in Baas-Sullivan theory. We use formal group theory to derive various formulae for this power operation, and deduce a number of results about realising -local -modules as -modules.

**1.**J. F. Adams. A variant of E. H. Brown's representability theorem.*Topology*, 10:185-198, 1971. MR**44:1018****2.**J. F. Adams.*Stable Homotopy and Generalised Homology*. University of Chicago Press, Chicago, 1974. MR**53:6534****3.**M. Ando. Isogenies of formal group laws and power operations in the cohomology theories .*Duke Mathematical Journal*, 79(2):423-485, 1995. MR**97a:55006****4.**N. Baas. On bordism theory of manifolds with singularities.*Math. Scand.*, 33:279-302, 1973. MR**49:11547b****5.**E. H. Brown. Cohomology theories.*Annals of Mathematics*, 75:467-484, 1962. MR**25:1551****6.**E. H. Brown and F. P. Peterson. A spectrum whose cohomology is the algebra of reduced p-th powers.*Topology*, 5:149-154, 1966. MR**33:719****7.**R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger.*Ring Spectra and their Applications*, volume 1176 of*Lecture Notes in Mathematics*. Springer-Verlag, 1986. MR**88e:55001****8.**A. D. Elmendorf. Stabilisation as a CW approximation. Available from`http://hopf.math.`

`purdue.edu`, 1997.**9.**A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May.*Rings, Modules and Algebras in Stable Homotopy Theory*, volume 47 of*Amer. Math. Soc. Surveys and Monographs*. American Mathematical Society, 1996. MR**97h:55006****10.**J. Franke. On the construction of elliptic cohomology.*Math. Nachr.*, 158:43-65, 1992. MR**94h:55007****11.**M. Hovey, J. H. Palmieri, and N. P. Strickland. Axiomatic stable homotopy theory.*Mem. Amer. Math. Soc.*, 128(610):x+114, 1997. MR**98a:55017****12.**M. Hovey and N. P. Strickland. Morava -theories and localisation. To appear in the Memoirs of the American Mathematical Society, 1995. CMP**98:07****13.**P. S. Landweber. Homological properties of comodules over and .*American Journal of Mathematics*, 98:591-610, 1976. MR**54:11311****14.**L. G. Lewis. Is there a convenient category of spectra?*Journal of Pure And Applied Algebra*, 73:233-246, 1991. MR**92f:55008****15.**L. G. Lewis, J. P. May, and M. Steinberger (with contributions by J. E. McClure).*Equivariant Stable Homotopy Theory*, volume 1213 of*Lecture Notes in Mathematics*. Springer-Verlag, New York, 1986. MR**88e:55002****16.**H. R. Margolis.*Spectra and the Steenrod Algebra*. North-Holland, 1983. MR**86j:55001****17.**H. R. Miller. Finite localizations.*Boletin de la Sociedad Matematica Mexicana*, 37:383-390, 1992. This is a special volume in memory of José Adem, and is really a book. The editor is Enrique Ramírez de Arellano. MR**96h:55009****18.**O. K. Mironov. Existence of multiplicative structures in the theory of cobordism with singularities.*Izv. Akad. Nauk SSSR Ser. Mat.*, 39(5):1065-1092,1219, 1975. MR**53:6598****19.**O. K. Mironov. Multiplicativity in the theory of cobordism with singularities and the Steenrod-Tom Dieck operations.*Math USSR Izvestiya*, 13(1):89-107, 1979. MR**80d:55005****20.**J. Morava. A product for the odd primary bordism of manifolds with singularities.*Topology*, 18:177-186, 1979. MR**80k:57063****21.**C. Nassau. On the structure of for . preprint, 1996.**22.**C. Nassau.*Eine nichtgeometrische Konstruktion der Spektren , Multiplikativen und antimultiplikativen Automorphismen von*. PhD thesis, Johann Wolfgang Goethe-Universität Frankfurt, October 1995.**23.**D. G. Quillen. On the formal group laws of unoriented and complex cobordism.*Bulletin of the American Mathematical Society*, 75:1293-1298, 1969. MR**40:6565****24.**D. G. Quillen. Elementary proofs of some results of cobordism theory using Steenrod operations.*Advances in Mathematics*, 7:29-56, 1971. MR**44:7566****25.**D. C. Ravenel.*Complex Cobordism and Stable Homotopy Groups of Spheres*. Academic Press, 1986. MR**87j:55003****26.**D. C. Ravenel.*Nilpotence and Periodicity in Stable Homotopy Theory*, volume 128 of*Annals of Mathematics Studies*. Princeton University Press, 1992. MR**94b:55015****27.**N. Shimada and N. Yagita. Multiplications in the complex bordism theory with singularities.*Publications of Research Institute of Mathematical Sciences, Kyoto University*, 12:259-293, 1976. MR**54:3723****28.**T. tom Dieck. Steenrod-Operationen in Kobordismen-Theorien.*Math. Z.*, 107:380-401, 1968. MR**39:6302****29.**W. S. Wilson.*Brown-Peterson Homology: An Introduction and Sampler*, volume 48 of*Regional Conference Series in Mathematics*. American Mathematical Society, 1982. MR**83j:55005****30.**J. J. Wolbert. Classifying modules over -theory spectra.*J. Pure Appl. Algebra*, 124(1-3):289-323, 1998. CMP**98:07****31.**U. Würgler. Cohomology theory of unitary manifolds with singularities and formal group laws.*Mathematische Zeitschrift*, 150:239-60, 1976. MR**54:6173****32.**U. Würgler. On products in a family of cohomology theories associated to the invariant prime ideals of .*Commentarii Mathematici Helvetici*, 52:457-81, 1977. MR**57:17624****33.**U. Würgler. Commutative ring-spectra in characteristic 2.*Commentarii Mathematici Helvetici*, 61:33-45, 1986. MR**87i:55008****34.**Z.-I. Yosimura. Universal coefficient sequences for cohomology theories of -spectra.*Osaka J. Math.*, 12(2):305-323, 1975.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55T25

Retrieve articles in all journals with MSC (1991): 55T25

Additional Information

**N. P. Strickland**

Affiliation:
Trinity College, Cambridge CB2 1TQ, England

Address at time of publication:
Department of Pure Mathematics, University of Sheffield, Sheffield S3 7RH, United Kingdom

Email:
n.p.strickland@sheffield.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-99-02436-8

Received by editor(s):
January 9, 1997

Published electronically:
March 1, 1999

Article copyright:
© Copyright 1999
American Mathematical Society