Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Knot invariants from
symbolic dynamical systems


Authors: Daniel S. Silver and Susan G. Williams
Journal: Trans. Amer. Math. Soc. 351 (1999), 3243-3265
MSC (1991): Primary 57Q45; Secondary 54H20, 20E06, 20F05
DOI: https://doi.org/10.1090/S0002-9947-99-02167-4
Published electronically: April 7, 1999
MathSciNet review: 1466957
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $G$ is the group of an oriented knot $k$, then the set $\operatorname{Hom} (K, \Sigma )$ of representations of the commutator subgroup $K = [G,G]$ into any finite group $\Sigma $ has the structure of a shift of finite type $\Phi _{\Sigma }$, a special type of dynamical system completely described by a finite directed graph. Invariants of $\Phi _{\Sigma }$, such as its topological entropy or the number of its periodic points of a given period, determine invariants of the knot. When $\Sigma $ is abelian, $\Phi _{\Sigma }$ gives information about the infinite cyclic cover and the various branched cyclic covers of $k$. Similar techniques are applied to oriented links.


References [Enhancements On Off] (What's this?)

  • [Al] J.W. Alexander, ``Topological invariants of knots and links,'' Trans. Amer. Math. Soc. 30 (1928), 275-306.
  • [Ba1] G. Baumslag, ``Wreath products and finitely presented groups,'' Math. Z. 75 (1960/61), 22-28. MR 22:11026
  • [Ba2] G. Baumslag, Topics in Combinatorial Group Theory, Birkhäuser Verlag, Basel, 1993. MR 94j:20034
  • [BuZi] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics 5, de Gruyter, Berlin, 1985. MR 87b:57004
  • [CrFo] R.H. Crowell and R.H. Fox, An Introduction to Knot Theory, Ginn and Co., 1963. MR 26:4348
  • [CrTr] R.H. Crowell and H.F. Trotter, ``A class of pretzel knots,'' Duke Math. J. 30 (1963), 373-377. MR 27:2977
  • [De] M.R. Dellomo, ``On the inverse limit of the branched cyclic covers associated with a knot,'' J. Pure Appl. Algebra 40 (1986), 15-26. MR 87h:57008
  • [Do] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, New York, 1972. MR 54:3685
  • [Fo] R.H. Fox, ``A quick trip through knot theory,'' in Topology of 3-Manifolds and Related Topics (edited by M.K. Fort), Prentice-Hall, N.J. (1961), 120-167. MR 25:3522
  • [Hal] P. Hall, ``Finiteness conditions for soluble groups,'' Proc. LondonMath. Soc. 4 (1954), 419-436. MR 17:344c
  • [Har] R. Hartley, ``Metabelian representations of knot groups,'' PacificJ. Math. 82 (1979), 93-104. MR 81a:57007
  • [HauKe] J.C. Hausmann and M. Kervaire, ``Sous-groupes dérivés des groupes de noeuds,'' L'Enseign. Math. 24 (1978), 111-123. MR 58:7643
  • [Hil] J.A. Hillman, ``A remark on branched cyclic covers,'' J. Pure Appl.Algebra 87 (1993), 237-240. MR 94f:57001
  • [Hir] F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, New York, 1966. MR 34:2573
  • [KimRou] K.H. Kim and F. Roush, email correspondence.
  • [Kit] B.P. Kitchens, ``Expansive dynamics on zero-dimensional groups,'' Ergodic Theory and Dynamical Systems 7 (1987), 249-261. MR 88i:28039
  • [LiMa] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, 1995. MR 97a:58050
  • [Lo] J. Los, ``Knots, braid index and dynamical type,'' Topology 33 (1994), 257-270. MR 95h:57007
  • [LySc] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory, Springer-Verlag, Berlin, New York, 1977. MR 58:28182
  • [Mi] J.W. Milnor, ``Infinite cyclic coverings,'' in Conference on the Topology of Manifolds (edited by J.G. Hocking), Prindle, Weber, and Schmidt, Boston, 1968, 115-133. MR 39:3497
  • [Pr] J.H. Przytycki, ``$3$-coloring and other elementary invariants of knots,'' Proceedings of the 1995 Conference in Knot Theory at the Banach Center in Warsaw, 275-295. CMP 98:16
  • [Ra] E.S. Rapaport, ``Knot-like groups,'' in Annals of Math. Studies 84, Princeton Univ. Press, Princeton, 1975, 119-133. MR 55:13406
  • [Ri] R. Riley, ``Homomorphisms of knot groups on finite groups,'' Math. Comp.25 (1971), 603-619. MR 45:4399
  • [Rol] D. Rolfsen, ``Knots and Links,'' Mathematics Lecture Series 7, Publish or Perish, Inc., Berkeley, 1976. MR 58:24236; MR 95c:57018 (corrected reprint)
  • [Se] H. Seifert, ``Über das Geschlect von Knoten,'' Math. Ann. 110 (1934), 571-592.
  • [Si1] D.S. Silver, ``Augmented group systems and $n$-knots,'' Math. Ann. 296 (1993), 585-593. MR 94i:57039
  • [Si2] D.S. Silver, ``Knot invariants from topological entropy,'' Topology Appl. 61, (1995), 159-177. MR 95m:57020
  • [SiWi1] D.S. Silver and S.G. Williams, `` Augmented group systems and shifts of finite type,'' Israel J. Math. 95, (1996), 231-251. MR 98b:20045
  • [SiWi2] D.S. Silver and S.G. Williams, ``Generalized $n$-colorings of links,'' Proceedings of the 1995 Conference in Knot Theory at the Banach Center in Warsaw, 381-394. CMP 9:16
  • [St] W.H. Stevens, ``Periodicity for the ${\mathbf{Z}}/p^{r}$-homology of cyclic covers of knots and Z-homology circles,'' J. Pure Appl. Algebra (in press).
  • [Vi] J.W. Vick, Homology Theory, Second Edition, Springer-Verlag, New York, 1994. MR 94i:55002
  • [Zh] D. Zheng, ``Symbolic dynamics applied to combinatorial group theory: a toolkit,'' Master of Science thesis in Computer Science, University of South Alabama, 1996.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57Q45, 54H20, 20E06, 20F05

Retrieve articles in all journals with MSC (1991): 57Q45, 54H20, 20E06, 20F05


Additional Information

Daniel S. Silver
Affiliation: Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
Email: silver@mathstat.usouthal.edu

Susan G. Williams
Affiliation: Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
Email: williams@mathstat.usouthal.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02167-4
Received by editor(s): June 27, 1996
Received by editor(s) in revised form: July 16, 1997
Published electronically: April 7, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society