Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On modules of bounded multiplicities
for the symplectic algebras


Authors: D. J. Britten and F. W. Lemire
Journal: Trans. Amer. Math. Soc. 351 (1999), 3413-3431
MSC (1991): Primary 17B10
DOI: https://doi.org/10.1090/S0002-9947-99-02338-7
Published electronically: April 20, 1999
MathSciNet review: 1615943
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Simple infinite dimensional highest weight modules having
bounded weight multipicities are classified as submodules of a tensor product. Also, it is shown that a simple torsion free module of finite degree tensored with a finite dimensional module is completely reducible.


References [Enhancements On Off] (What's this?)

  • [BBL] G.M. Benkart, D.J. Britten, and F.W. Lemire, Modules with Bounded Weight Multiplicities for Simple Lie Algebras, Math. Z. 225 (1997), 333-353. MR 98h:17004
  • [BFL] D.J. Britten, V. Futorny, and F.W. Lemire, Simple $A_2$ modules with a finite dimensional weight space, Comm. in Algebra 23 (1995), 467-510. MR 95k:17005
  • [BHL] D.J. Britten, J. Hooper, and F.W. Lemire, Simple $C_n$-modules with multiplicities 1 and applications, Canad. Jour. of Physics 72 (1994), 326-335. MR 96d:17004
  • [BL1] D.J. Britten and F.W. Lemire, A Pieri-like Formula for Torsion Free Modules, Canad. J. Math. 50 (1998), 266-289.
  • [BL2] D.J. Britten and F.W. Lemire, A classification of simple Lie modules having a 1-dimensional weight space, Trans. Amer. Math. Soc. 299 (1987), 683-697. MR 88b:17013
  • [D1] J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris-Brussels-Montréal (1974). MR 58:16803a
  • [D2] J. Dixmier, Idéaux Primitifs Dans L'Algèbre Enveloppante D'Une Algèbre De Lie Semi-Simple, Bull. Sc. Math., $2^e$ série, 96, (1972), 339-351. MR 48:356
  • [F] S.L. Fernando, Lie algebra modules with finite dimensional weight spaces I, Trans. Amer. Math. Soc. 322 (1990), 757-781. MR 91c:17006
  • [J] J.C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics 750, Springer-Verlag (1979). MR 81m:17011
  • [K] B. Kostant, On the tensor product of a finite and an infinite dimensional representation, J. Func. Anal. 20(1975), 257-285. MR 54:2888
  • [L1] F.W. Lemire, Note on Weight Spaces of Irreducible Linear Representations, Canad. Math. Bull. 11 (1968), 399-403. MR 38:3385
  • [L2] F.W. Lemire, Weight Spaces and Irreducible Representations of Simple Lie Algebras, Proc. Amer. Math. Soc. 22 (1969), 192-197. MR 39:4326
  • [M] O. Mathieu, Classification of Irreducible Weight Modules, preprint

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B10

Retrieve articles in all journals with MSC (1991): 17B10


Additional Information

D. J. Britten
Affiliation: Department of Mathematics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

F. W. Lemire
Affiliation: Department of Mathematics, University of Windsor, Windsor, Ontario, Canada N9B 3P4

DOI: https://doi.org/10.1090/S0002-9947-99-02338-7
Received by editor(s): April 15, 1997
Published electronically: April 20, 1999
Additional Notes: The first author was supported in part by NSERC Grant #0GP0008471 and the second author was supported in part by NSERC Grant #0GP0007742
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society