Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weight distributions of geometric Goppa codes


Author: Iwan M. Duursma
Journal: Trans. Amer. Math. Soc. 351 (1999), 3609-3639
MSC (1991): Primary 11T71, 14G15, 94B27
DOI: https://doi.org/10.1090/S0002-9947-99-02179-0
Published electronically: May 3, 1999
MathSciNet review: 1473438
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The in general hard problem of computing weight distributions of linear codes is considered for the special class of algebraic-geometric codes, defined by Goppa in the early eighties. Known results restrict to codes from elliptic curves. We obtain results for curves of higher genus by expressing the weight distributions in terms of $L$-series. The results include general properties of weight distributions, a method to describe and compute weight distributions, and worked out examples for curves of genus two and three.


References [Enhancements On Off] (What's this?)

  • 1. E. Artin and J.T. Tate. Class field theory. Math. Lecture Notes. Benjamin, New York, 1967.
  • 2. E.F. Assmus Jr., H.F. Mattson Jr. and R.J. Turyn. Cyclic Codes. AFCRL-65-332, Air Force Cambridge Research Labs, Bedford, Mass., 1968.MR 36:6383
  • 3. E. Bannai and T. Ito. Algebraic Combinatorics I: association schemes. Benjamin / Cummings Publ. Co., Menlo Park, Calif., 1984. MR 87m:05001
  • 4. R. Blahut. Theory and practice of error control codes. Addison-Wesley, Reading, Mass., 1983. MR 85f:94001
  • 5. A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance Regular Graphs. Springer, 1989. MR 90e:05001
  • 6. Y. Driencourt and J.-F. Michon. Elliptic codes over a field of characteristic 2. J. of Pure and Applied Algebra, 45:15-39, 1987. MR 88m:94029
  • 7. I.M. Duursma. Average weight enumerators for geometric goppa codes. in: ACCT-Proceedings, p.82. Novgorod, Russia, 1994.
  • 8. G.D. Forney. Concatenated Codes. The M.I.T. Press, Cambridge, Mass., 1966. MR 49:12154
  • 9. G. Frey and H.-G. Rück. A remark concerning $m$-divisibility and the discrete logarithm in the divisor class group of curves. Math.-Comp., 62(206):865-874, 1994. MR 94h:11056
  • 10. A. Fröhlich and M.J. Taylor. Algebraic number theory. Cambridge University Press, Cambridge, 1993. MR 94d:11078
  • 11. V.D. Goppa. Codes on algebraic curves. Soviet Math. Dokl., 24:170-172, 1981. MR 82k:94017
  • 12. H. Heilbronn. Zeta-functions and L-functions. in: Algebraic number theory, eds. J.W.S. Cassels and A. Fröhlich. Academic Press, London, 1967. MR 36:1414
  • 13. S. Iyanaga. The theory of numbers, volume 8 of Math. Lib. North Holland, Amsterdam, 1975. MR 56:2953
  • 14. T. Kasami, S. Lin and W.W. Peterson. Some Results on Weight Distributions of BCH Codes. IEEE Trans. Inf. Theor., 12:274, 1966.
  • 15. G.L. Katsman and M.A. Tsfasman. Spectra of algebro-geometric codes. Probl. Info. Trans., 23:262-275, 1987. MR 90a:11149
  • 16. T. Klove. The weight distribution of linear codes over $GF(q^l)$ having generator matrix over $GF(q)$. Discrete Mathematics,23:159-168, 1978. MR 81d:94024
  • 17. W.-C. W. Li. Character sums and abelian Ramanujan graphs. J. of Numb. Th., 41:199-217, 1992. MR 93h:11092
  • 18. F.J. MacWilliams and N.J.A. Sloane. The theory of error-correcting codes. North Holland, Amsterdam, 1977. MR 57:5408a; MR 57:5408b
  • 19. A.J. Menezes, I.F. Blake, R.C. Mullin, X. Gao, S.A. Vanstone, and T. Yaghoobian. Applications of finite fields, volume 0199 of SECS. Kluwer Acad. Publ., Dordrecht, The Netherlands, 1993.
  • 20. C.J. Moreno. Algebraic curves over finite fields. Tracts in Mathematics. Cambridge Univ. Press, Cambridge, England, 1991. MR 92d:11066
  • 21. R. Pellikaan On the gonality of curves, abundant codes and decoding. in: Proceedings AGCT-3, Springer LNM 1518, Berlin 1992, 132-144. MR 93j:14023
  • 22. R. Pellikaan. On special divisors and the two variable zeta function of algebraic curves over finite fields. in: Arithmetic, Geometry and Coding Theory, eds. Pellikaan, Perret, Vl\u{a}du\c{t}. deGruyter, Berlin, 1996. MR 97g:11063
  • 23. M. Rosen. The Hilbert class field in function fields. Expo. Math., 5:365-378, 1987. MR 89b:11094
  • 24. H. Stichtenoth. Algebraic function fields and codes. Universitext. Springer-Verlag, New York, 1993. MR 94k:14016
  • 25. M.A. Tsfasman. Global fields, codes and sphere packings. Astérisque, 198-200:373-396, 1991. MR 92j:11063
  • 26. M.A. Tsfasman and S.G. Vl\u{a}du\c{t}. Algebraic-geometric codes. Kluwer Acad. Publ., Dordrecht, The Netherlands, 1991. MR 93i:94023
  • 27. M.A. Tsfasman and S.G. Vl\u{a}du\c{t}. Geometric Approach to Higher Weights. IEEE Trans. Infor. Th., 41:1564-1588, 1995. MR 97m:94042
  • 28. J.H. van Lint. Introduction to coding theory, volume 86 of GTM. Springer, Berlin, 1982. MR 84e:94001
  • 29. J.H. van Lint and G. van der Geer. Introduction to coding theory and algebraic geometry, volume 12 of DMV Seminar. Birkhaeuser, Basel, 1988. MR 91e:94023
  • 30. S.G. Vl\u{a}du\c{t}. Two remarks on the spectra of algebraic geometry codes. in: Arithmetic, Geometry and Coding Theory, eds. Pellikaan, Perret, Vl\u{a}du\c{t}. deGruyter, Berlin, 1996. MR 97g:11064
  • 31. A. Weil. Sur les courbes algébriques et les variétés qui s'en déduisent. Hermann, Paris, 1948. MR 10:262c
  • 32. J. Weissinger. Theorie der Divisorenkongruenzen. Abh. Math. Sem. Hanischen Univ., 12:115-126, 1937.
  • 33. V.K. Wei. Generalized Hamming weights for linear codes. IEEE Trans. Infor. Th., 37:1412-1418, 1991. MR 92i:94019

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11T71, 14G15, 94B27

Retrieve articles in all journals with MSC (1991): 11T71, 14G15, 94B27


Additional Information

Iwan M. Duursma
Affiliation: AT&T Labs Research, 180 Park Avenue, Florham Park, New Jersey 07932
Address at time of publication: Department of Mathematics, University of Limoges, 123 avenue Albert Thomas, 87060 Limoges, France
Email: duursma@unilin.fr

DOI: https://doi.org/10.1090/S0002-9947-99-02179-0
Keywords: Algebraic curve over a finite field, algebraic-geometric code, weight distribution
Received by editor(s): December 27, 1996
Received by editor(s) in revised form: July 15, 1997
Published electronically: May 3, 1999
Additional Notes: This work was initiated while the author was a post-doc at the CNRS Laboratoire de Mathématiques Discrètes, Luminy, France, with support by the Netherlands Organization for Scientific Research NWO
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society