Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A global condition for
periodic Duffing-like equations


Authors: Piero Montecchiari, Margherita Nolasco and Susanna Terracini
Journal: Trans. Amer. Math. Soc. 351 (1999), 3713-3724
MSC (1991): Primary 58E05, 70H35, 34C37, 58F15
DOI: https://doi.org/10.1090/S0002-9947-99-02249-7
Published electronically: March 1, 1999
MathSciNet review: 1487629
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study Duffing-like equations of the type $\ddot q= q - \alpha (t)W'(q) $,with $\alpha \in C({\mathbb{R}},{\mathbb{R}})$ periodic. We prove that if the stable and unstable manifolds to the origin do not coincide, then the system exhibits positive topological entropy.


References [Enhancements On Off] (What's this?)

  • 1. M.S. Berger, Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis, Academic Press, 1977. MR 58:7671
  • 2. U. Bessi, A Variational Proof of a Sitnikov-like Theorem, Nonlinear Anal. 20 (1993), 1303-1318. MR 94e:58020
  • 3. S.V. Bolotin, Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 6 (1980), 98-103. MR 85j:58051
  • 4. B. Buffoni and E. Séré, A global condition for quasi-random behavior in a class of conservative systems, Comm. Pure Appl. Math. 49 (1996), 285-305. MR 97g:58033
  • 5. S.N. Chow, J. Hale and J. Mallet-Paret, An example of bifurcation to homoclinic orbits, J. Diff. Equat. 37 (1980), 351-373. MR 81m:58056
  • 6. K. Cieliebak and E. Séré, Pseudo-holomorphic curves and the shadowing lemma, Duke Math. J. (to appear).
  • 7. V. Coti Zelati, I. Ekeland and E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math.Ann. 288 (1990), 133-160. MR 91g:58065
  • 8. V. Coti Zelati and P.H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc. 4 (1991), 693-727. MR 93e:58023
  • 9. J.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, I, Ann. Inst. H. Poincaré Anal. Nonlin. 1 (1984), 109-145. MR 87e:49035a
  • 10. C. Miranda, Un'osservazione su un teorema di Brouwer, Boll. Unione Mat. Ital. 3 (1940), 5-7. MR 3:60b
  • 11. P. Montecchiari, M. Nolasco and S. Terracini, Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems, Calc. of Var. (to appear). CMP 98:02
  • 12. J. Moser, Stable and random motions in dynamical systems, Princeton University Press, 1973. MR 56:1355
  • 13. M. Nolasco, Multibump solutions for a class of time dependent second order Hamiltonian systems, Ph.D. thesis, SISSA, 1995.
  • 14. K.J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Diff. Equat. 55 (1984), 222-256. MR 86d:58088
  • 15. M. Pollicott, Lectures on ergodic theory and Pesin theory on compact manifolds, London Math. Soc., Lec. Note Series, vol. 180, Cambridge Univ. Press, 1983. MR 94k:58080
  • 16. P.H. Rabinowitz, A multibump construction in a degenerate setting, Calc. Var. Partial Differential Equations 5 (1997), 159-182. MR 98b:58034
  • 17. E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z. 209 (1992), 27-42. MR 92k:58201
  • 18. E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré, Anal. Non Linéaire 10 (1993), 561-590. MR 95b:58031
  • 19. S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. MR 37:3598
  • 20. S. Wiggins, Global bifurcations and chaos, Applied Mathematical Sciences, vol. 73, Springer-Verlag, 1988. MR 89m:58057

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58E05, 70H35, 34C37, 58F15

Retrieve articles in all journals with MSC (1991): 58E05, 70H35, 34C37, 58F15


Additional Information

Piero Montecchiari
Affiliation: Dipartimento di Matematica, Universitá degli studi di Trieste, Piazzale Europa 1, 34013 Trieste, Italy
Email: montec@univ.trieste.it

Margherita Nolasco
Affiliation: S.I.S.S.A., via Beirut 4, 34013 Trieste, Italy
Email: nolasco@neumann.sissa.it

Susanna Terracini
Affiliation: Dipartimento di Matematica del Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
Email: suster@ipmma1.mate.polimi.it

DOI: https://doi.org/10.1090/S0002-9947-99-02249-7
Keywords: Duffing equations, homoclinic orbits, multibump solutions, minimax argument.
Received by editor(s): July 16, 1996
Received by editor(s) in revised form: March 31, 1997
Published electronically: March 1, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society