Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Connectedness properties of limit sets


Author: B. H. Bowditch
Journal: Trans. Amer. Math. Soc. 351 (1999), 3673-3686
MSC (1991): Primary 20F32
DOI: https://doi.org/10.1090/S0002-9947-99-02388-0
Published electronically: April 20, 1999
MathSciNet review: 1624089
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study convergence group actions on continua, and give a criterion which ensures that every global cut point is a parabolic fixed point. We apply this result to the case of boundaries of relatively hyperbolic groups, and consider implications for connectedness properties of such spaces.


References [Enhancements On Off] (What's this?)

  • [Ab] H.Abels, An example of a finitely presented solvable group, in ``Homological group theory'', London Math. Society Lecture Notes Series, No. 36 (ed. C.T.C.Wall), Cambridge University Press (1979) 205-211. MR 82b:20047
  • [AnM] J.W.Anderson, B.Maskit, On the local connectivity of limit sets of kleinian groups, Complex Variables 31 (1996) 177-183. MR 98a:30055
  • [BeF1] M.Bestvina, M.Feighn, Bounding the complexity of simplicial group actions on trees, Invent. Math. 103 (1991) 449-469. MR 92c:20044
  • [BeF2] M.Bestvina, M.Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85-101. MR 93d:53053
  • [BeF3] M.Bestvina, M.Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287-321. MR 96h:20056
  • [BeM] M.Bestvina, G.Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469-481. MR 93j:20076
  • [Bi] R.Bieri, Homological dimension of discrete groups, Queen Mary College Mathematics Notes (1976). MR 57:6224
  • [Bo1] B.H.Bowditch, Discrete parabolic groups, J. Differential Geom. 38 (1993) 559-583. MR 94h:53046
  • [Bo2] B.H.Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229-274. MR 96b:53056
  • [Bo3] B.H.Bowditch, Treelike structures arising from continua and convergence groups, Memoirs Amer. Math. Soc. CMP 98:05
  • [Bo4] B.H.Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145-186. CMP 98:17
  • [Bo5] B.H.Bowditch, Group actions on trees and dendrons, Topology 37 (1998), no. 6, 1275-1298. CMP 98:15
  • [Bo6] B.H.Bowditch, Boundaries of strongly accessible hyperbolic groups, in ``The Epstein Birthday Schrift'', Geometry and Topology Monographs, Vol. 1 (ed. I.Rivin, C.Rourke, C.Series) International Press (1998) 59-97.
  • [Bo7] B.H.Bowditch, Convergence groups and configuration spaces, to appear in ``Group Theory Down Under'' (ed. J.Cossey, C.F.Miller, W.D.Neumann, M.Shapiro), de Gruyter.
  • [Bo8] B.H.Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997).
  • [Bo9] B.H.Bowditch, Peripheral splittings of groups, preprint, Southampton (1997).
  • [Bo10] B.H.Bowditch, Boundaries of geometrically finite groups, to appear in Math. Z.
  • [BoS] B.H.Bowditch, G.A.Swarup, Cut points in the boundaries of hyperbolic groups, in preparation.
  • [D] M.J.Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985) 449-457. MR 87d:20037
  • [DS] M.J.Dunwoody, M.E.Sageev, JSJ splittings for finitely presented groups over slender subgroups, Invent. Math. 135 (1999) 25-44.
  • [F] E.M.Freden, Negatively curved groups have the convergence property I, Ann. Acad. Sci. Fenn. Ser. A Math. 20 (1995) 333-348. MR 96g:20054
  • [GeM] F.W.Gehring, G.J.Martin, Discrete quasiconformal groups I, Proc. London Math. Soc. 55 (1987) 331-358. MR 88m:30057
  • [GhH] E.Ghys, P.de la Harpe, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Maths. 83, Birkhäuser (1990). MR 94m:53060
  • [Gr] M.Gromov, Hyperbolic groups, in ``Essays in Group Theory" (ed. S.M.Gersten) M.S.R.I. Publications No. 8, Springer-Verlag (1987) 75-263. MR 89e:20070
  • [L] G.Levitt, Non-nesting actions on real trees, Bull. London Math. Soc. 30 (1998) 46-54. MR 99a:20027
  • [M] M.Mihalik, Semistability at $ \infty $ of finitely generated groups, and solvable groups, Topology and its Appl. 24 (1986) 259-269. MR 88c:57005
  • [Se] Z.Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank 1 Lie groups II, Geom. Funct. Anal. 7 (1997) 561-593. MR 98j:20044
  • [Sw] G.A.Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996) 98-100 (Electronic). MR 97f:20048
  • [T] P.Tukia, Convergence groups and Gromov's hyperbolic metric spaces, New Zealand J. Math. 23 (1994) 157-187. MR 96c:30042

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 20F32

Retrieve articles in all journals with MSC (1991): 20F32


Additional Information

B. H. Bowditch
Affiliation: Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO17 1BJ, Great Britain
Email: bhb@maths.soton.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-99-02388-0
Received by editor(s): August 22, 1997
Published electronically: April 20, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society