Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Morse homology for generating functions
of Lagrangian submanifolds


Author: Darko Milinkovic
Journal: Trans. Amer. Math. Soc. 351 (1999), 3953-3974
MSC (1991): Primary 58E05; Secondary 57R57, 58F05
Published electronically: March 8, 1999
MathSciNet review: 1475690
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of the paper is to give an alternative construction and the proof of the main properties of symplectic invariants developed by Viterbo. Our approach is based on Morse homology theory. This is a step towards relating the ``finite dimensional'' symplectic invariants constructed via generating functions to the ``infinite dimensional'' ones constructed via Floer theory in Y.-G. Oh, Symplectic topology as the geometry of action functional. I, J. Diff. Geom. 46 (1997), 499-577.


References [Enhancements On Off] (What's this?)

  • 1. Martin Betz and Ralph L. Cohen, Graph moduli spaces and cohomology operations, Turkish J. Math. 18 (1994), no. 1, 23–41. MR 1270436
  • 2. Marc Chaperon, Une idée du type “géodésiques brisées” pour les systèmes hamiltoniens, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 13, 293–296 (French, with English summary). MR 765426
  • 3. Marc Chaperon, An elementary proof of the Conley-Zehnder theorem in symplectic geometry, Dynamical systems and bifurcations (Groningen, 1984) Lecture Notes in Math., vol. 1125, Springer, Berlin, 1985, pp. 1–8. MR 798078, 10.1007/BFb0075631
  • 4. Andreas Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988), no. 3, 513–547. MR 965228
  • 5. Andreas Floer, Cuplength estimates on Lagrangian intersections, Comm. Pure Appl. Math. 42 (1989), no. 4, 335–356. MR 990135, 10.1002/cpa.3160420402
  • 6. Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989), no. 1, 207–221. MR 1001276
  • 7. K. Fukaya. Morse theory and topological field theory. To appear in Sugaku Expositions.
  • 8. K. Fukaya and Y.-G. Oh. Zero loop open strings in the cotangent bundle and Morse homotopy. Asian J. Math., 1: 96-180, 1997. CMP 98:04
  • 9. Lars Hörmander, Fourier integral operators. I, Acta Math. 127 (1971), no. 1-2, 79–183. MR 0388463
  • 10. Y. Pomeau and P. Manneville, Intermittency: a generic phenomenon at the onset of turbulence, Intrinsic stochasticity in plasmas (Internat. Workshop, Inst. Études Sci. Cargèse, Cargèse, 1979) École Polytech., Palaiseau, 1979, pp. 329–340. MR 578624
  • 11. D. Milinkovi\'{c} and Y.-G. Oh. Generating functions versus the action functional- stable Morse theory versus Floer theory. To appear in Proceedings of Workshop on Geometry, Topology and Dynamics, Montreal, 1995.
  • 12. John Milnor, Lectures on the ℎ-cobordism theorem, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. MR 0190942
  • 13. Y.-G. Oh. Symplectic topology as the geometry of action functional II. Preprint.
  • 14. Yong-Geun Oh, Symplectic topology as the geometry of action functional. I. Relative Floer theory on the cotangent bundle, J. Differential Geom. 46 (1997), no. 3, 499–577. MR 1484890
  • 15. Matthias Schwarz, Morse homology, Progress in Mathematics, vol. 111, Birkhäuser Verlag, Basel, 1993. MR 1239174
  • 16. Jean-Claude Sikorav, Problèmes d’intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv. 62 (1987), no. 1, 62–73 (French). MR 882965, 10.1007/BF02564438
  • 17. Stephen Smale, The generalized Poincaré conjecture in higher dimensions, Bull. Amer. Math. Soc. 66 (1960), 373–375. MR 0124912, 10.1090/S0002-9904-1960-10458-2
  • 18. D. Théret. Utilisation des fonctions generatrices en geometrie symplectique globale. PhD thesis, Université de Paris 7, 1995.
  • 19. Lisa Traynor, Symplectic homology via generating functions, Geom. Funct. Anal. 4 (1994), no. 6, 718–748. MR 1302337, 10.1007/BF01896659
  • 20. Claude Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685–710. MR 1157321, 10.1007/BF01444643
  • 21. Edward Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661–692 (1983). MR 683171

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 58E05, 57R57, 58F05

Retrieve articles in all journals with MSC (1991): 58E05, 57R57, 58F05


Additional Information

Darko Milinkovic
Affiliation: Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Drive, Madison, Wisconsin 53706
Address at time of publication: Department of Mathematics, University of California, Irvine, California 92697-3875
Email: dmilinko@math.uci.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02217-5
Received by editor(s): August 18, 1997
Published electronically: March 8, 1999
Article copyright: © Copyright 1999 American Mathematical Society