Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Norm estimates and representations for
Calderón-Zygmund operators using
averages over starlike sets


Authors: David K. Watson and Richard L. Wheeden
Journal: Trans. Amer. Math. Soc. 351 (1999), 4127-4171
MSC (1991): Primary 42B20, 42B25
DOI: https://doi.org/10.1090/S0002-9947-99-02313-2
Published electronically: July 1, 1999
MathSciNet review: 1603994
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that homogeneous singular integrals may be represented in terms of averages over starlike sets. This permits us to use the geometry of starlike sets to derive operator-specific weighted norm inequalities.


References [Enhancements On Off] (What's this?)

  • [AJ] K. F. Andersen, R. T. John, Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69 (1980), 19-31. MR 82b:42015
  • [CZ] A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math, 78 (1956), 289-309. MR 18:894a
  • [CWW] S. Chanillo, D. K. Watson, R. L. Wheeden, Some integral and maximal operators related to starlike sets, Studia Math 107 (1993), 223-255. MR 94j:42027
  • [CF] R. R. Coifman, C. L. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math 51 (1974), 241-250. MR 50:10670
  • [CorF] A. Cordoba, C. Fefferman, A weighted norm inequality for singular integrals, Studia Mathematica 57 (1976), 97-101. MR 54:8132
  • [D] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals, Trans. A. M. S 336 (1993), 869-880.MR 93f:42030
  • [DR] J. Duoandikoetxea, J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Inventiones Math 84 (1986), 541-561. MR 87f:42046
  • [FS] C. Fefferman, E. M. Stein, Some maximal inequalities, American Jour. Math. 93 (1971), 107-115. MR 44:2026
  • [GR] J. Garcia-Cuerva, J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North Holland, Amsterdam, 1985. MR 87d:42023
  • [H1] S. Hofmann, Weighted norm inequalities and vector-valued inequalities for certain rough operators, Indiana Jour. Math. 42 (1993), 1-14. MR 94e:42019
  • [HW] S. Hofmann, D. K. Watson, Erratum to Steve Hofmann's paper, Weighted norm inequalities and vector-valued inequalities for certain rough operators, to appear.
  • [J] P. W. Jones, Factorization of $A_{p}$ weights, Ann. of Math. 111 (1980), 511-530. MR 82b:46035
  • [K] D. S. Kurtz,, Littlewood-Paley and multiplier theorems on weighted $L^{p}$ spaces, Trans. A. M. S. 259 (1980), 235-254. MR 80f:42013
  • [KW1] D. S. Kurtz, R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. A. M. S. 255 (1979), 343-362. MR 81j:42021
  • [KW2] -, A note on singular integrals with weights, Proc. A. M. S. 81 (1981), 391-397. MR 83h:42022
  • [MW] B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for singular and fractional integrals, Trans. A. M. S. 161 (1971), 249-258. MR 44:3155
  • [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, New Jersey, 1970. MR 44:7280
  • [SW1] E. M. Stein, G. Weiss, Interpolation of operators with change of measure, Trans. A. M. S. 87 (1958), 159-172. MR 19:1184d
  • [SW2] -, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, New Jersey, 1971. MR 46:4102
  • [T] Hans Triebel, Interpolation Theory, Function Spaces, and Differential Operators, North-Holland, Amsterdam/New York, 1978. MR 80i:46032b
  • [W1] D. Watson, Weighted estimates for singular integrals via Fourier transform estimates, Duke Math. Journal 60 (1990), 389-399. MR 91b:42035
  • [W2] -, Dual weighted bounds for maximal operators from smoothness or Fourier transform estimates, preprint.
  • [W3] -, $A_{1}$ weights and weak type (1, 1) estimates for rough operators, preprint.
  • [W4] -, Vector-valued inequalities, factorization, and extrapolation for a family of rough operators, Jour. Funct. Anal. 121 (1994), 389-415. MR 95h:42023
  • [Z] A. Zygmund, Trigonometric Series, vols. 1 and 2, Cambridge University Press, Cambridge, 1959. MR 21:6498

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 42B20, 42B25

Retrieve articles in all journals with MSC (1991): 42B20, 42B25


Additional Information

David K. Watson
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
Email: watsondk@member.ams.org

Richard L. Wheeden
Affiliation: Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903-2101
Email: wheeden@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02313-2
Received by editor(s): December 30, 1996
Received by editor(s) in revised form: December 15, 1997
Published electronically: July 1, 1999
Additional Notes: Supported in part by NSF Grant DMS95–00799
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society