Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Dimension formula for graded Lie algebras
and its applications


Authors: Seok-Jin Kang and Myung-Hwan Kim
Journal: Trans. Amer. Math. Soc. 351 (1999), 4281-4336
MSC (1991): Primary 17B01, 17B65, 17B70, 11F22
DOI: https://doi.org/10.1090/S0002-9947-99-02239-4
Published electronically: June 29, 1999
MathSciNet review: 1487619
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate the structure of infinite dimensional Lie algebras $L=\bigoplus _{\alpha \in \Gamma } L_{\alpha }$ graded by a countable abelian semigroup $\Gamma $ satisfying a certain finiteness condition. The Euler-Poincaré principle yields the denominator identities for the $\Gamma $-graded Lie algebras, from which we derive a dimension formula for the homogeneous subspaces $L_{\alpha }$ $(\alpha \in \Gamma )$. Our dimension formula enables us to study the structure of the $\Gamma $-graded Lie algebras in a unified way. We will discuss some interesting applications of our dimension formula to the various classes of graded Lie algebras such as free Lie algebras, Kac-Moody algebras, and generalized Kac-Moody algebras. We will also discuss the relation of graded Lie algebras and the product identities for formal power series.


References [Enhancements On Off] (What's this?)

  • [BBL] Benkart, G. M., Britten, D. J., Lemire, F. W., Stability in modules for classical Lie algebras - a constructive approach, Mem. Amer. Math. Soc. 430 (1990). MR 90m:17012
  • [BKM1] Benkart, G. M., Kang, S.-J., Misra, K. C., Graded Lie algebras of Kac-Moody type, Adv. Math. 97 (1993), 154-190. MR 94b:17039
  • [BKM2] Benkart, G. M., Kang, S.-J., Misra, K. C., Indefinite Kac-Moody algebras of classical type, Adv. Math. 105 (1994), 76-110. MR 95d:17023
  • [BKM3] Benkart, G. M., Kang, S.-J., Misra, K. C., Indefinite Kac-Moody algebras of special linear type, Pacific J. Math. 170 (1995), 379-404. MR 96k:17021
  • [BM] Berman, S., Moody, R. V., Multiplicities in Lie algebras, Proc. Amer. Math. Soc. 76 (1979), 223-228. MR 80h:17013
  • [B1] Borcherds, R. E., Vertex algebras, Kac-Moody algebras and the monster, Proc. Natl. Acad. Sci. USA 83 (1986), 3068-3071. MR 87m:17033
  • [B2] Borcherds, R. E., Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512. MR 89g:17004
  • [B3] Borcherds, R. E., The Monster Lie algebra, Adv. Math. 83 (1990), 30-47. MR 91k:17027
  • [B4] Borcherds, R. E., Central extensions of generalized Kac-Moody algebras, J. Algebra 140 (1991), 330-335. MR 92g:17031
  • [B5] Borcherds, R. E., Monstrous moonshine and monstrous Lie superalgebras, Invent. Math. 109 (1992), 405-444. MR 94f:11030
  • [B6] Borcherds, R. E., A characterization of generalized Kac-Moody algebras, J. Algebra 174 (1995), 1073-1079. MR 96e:17058
  • [B7] Borcherds, R. E., Automorphic forms on $O_{s+2,2}(\mathbf{R})$ and infinite products, Invent. Math. 120 (1995), 161-213. MR 96j:11067
  • [B8] Borcherds, R. E., Automorphic forms and Lie algebras, in Current Developments in Mathematics, International Press (1996), 1-27.
  • [Bo] Bourbaki, N., Lie Groups and Lie Algebras, Part 1, Hermann, Paris, 1975.
  • [Cas] Cassels, J. W. S., Rational Quadratic Forms, Academic Press, 1978. MR 80m:10019
  • [CE] Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press, 1956. MR 17:1040e
  • [CN] Conway, J. H., Norton, S., Monstrous moonshine, Bull. Lond. Math. Soc. 11 (1979), 308-339. MR 81j:20028
  • [F] Feingold, A. J., A hyperbolic GCM algebra and the Fibonacci numbers, Proc. Amer. Math. Soc. 80 (1980), 379-385. MR 81k:17009
  • [FF] Feingold, A. J., Frenkel, I. B., A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2, Math. Ann. 263 (1983), 87-144. MR 86a:17006
  • [FLT] Fischer, B., Livingstone, D., Thorne, M. P., The characters of the ``Monster'' simple group, Birmingham, 1978.
  • [Fr] Frenkel, I. B., Representations of Kac-Moody algebras and dual resonance models, in Applications of Group Theory in Physics and Mathematical Physics, Lectures in Applied Math. 21 (1985), 325-353. MR 87b:17010
  • [FLM] Frenkel, I. B., Lepowsky, J., Meurman, A., Vertex Operator Algebras and the Monster, Academic Press, 1988. MR 90h:17026
  • [GL] Garland, H., Lepowsky, J., Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37-76. MR 54:2744
  • [G] Gebert, T., Introduction to vertex algebras, Borcherds algebras and the monster Lie algebra, Inter. J. Mod. Phys. A8 (1993), 5441-5503. MR 95a:17037
  • [GT] Gebert, T., Teschner, J., On the fundamental representation of Borcherds algebras with one simple imaginary root, Lett. Math. Phys. 31 (1994), 327-334. MR 95h:17027
  • [GLS] Gorenstein, D., Lyons, R., Solomon, R., The Classification of the Finite Simple Groups, Mathematical Surveys and Monographs 40.1, Amer. Math. Soc., 1994. MR 95m:20014
  • [HMY] Harada, K., Miyamoto, M., Yamada, H., A generalization of Kac-Moody Lie algebras, J. Algebra 180 (1996), 631-651.
  • [HJK] Hong, J., Jeong, K.-H., Kwon, J.-H., Integral points on hyperbolas, J. Korean Math. Soc. 34 (1997), 149-157. MR 98e:11030
  • [Hu] Hua, L.-K., Introduction to Number Theory, Springer-Verlag, 1982. MR 83f:10001
  • [J] Jacobson, N., Lie Algebras, 2nd ed., Dover, New York, 1979. MR 80k:17001
  • [Ju1] Jurisich, E., Generalized Kac-Moody Lie algebras, free Lie algebras, and the structure of the monster Lie algebra, J. Pure and Applied Algebra 126 (1998), 233-266. CMP 98:07
  • [Ju2] Jurisich, E., An exposition of generalized Kac-Moody algebras, in Lie Algebras and Their Representations, S.-J. Kang, M.-H. Kim, I.-S. Lee (eds), Contemp. Math. 194 (1996), 121-159. MR 97e:17035
  • [JW] Jurisich, E., Wilson, R. L., A generalization of Lazard's theorem, preprint.
  • [JLW] Jurisich, E., Lepowsky, J., Wilson, R. L., Realizations of the Monster Lie algebra, Selecta Mathematica, New Series 1 (1995), 129-161. MR 96e:17059
  • [K1] Kac, V. G., Simple irreducible graded Lie algebras of finite growth, Math. USSR-Izvestija 2 (1968), 1271-1311. MR 41:4590
  • [K2] Kac, V. G., Infinite-dimensional Lie algebras and Dedekind's $\eta $-function, Funct. Anal. Appl. 8 (1974), 68-70. MR 51:10410
  • [K3] Kac, V. G., Infinite Dimensional Lie Algebras, 3rd ed., Cambridge University Press, 1990. MR 92k:17038
  • [KK] Kac, V. G., Kang, S.-J., Trace formula for graded Lie algebras and Monstrous Moonshine, in Representatins of Groups, B. Allison, G. Cliff (eds), Canad. Math. Soc. Conf. Proc. 16 (1995), 141-154. MR 96k:17044
  • [KMW] Kac, V. G., Moody, R. V., Wakimoto, M., On $E_{10}$, in Differential Geometrical Methods in Theoretical Physics, Bleuler, K., Werner, M. (eds), Kluwer Academic Publishers (1988), 109-128. MR 90e:17031
  • [Ka1] Kang, S.-J., Gradations and structure of Kac-Moody Lie algebras, Yale University Ph. D. dissertation (1990).
  • [Ka2] Kang, S.-J., Kac-Moody Lie algebras, Spectral sequences, and the Witt formula, Trans. Amer. Math. Soc. 339 (1993), 463-495. MR 93m:17013
  • [Ka3] Kang, S.-J., Root multiplicities of the hyperbolic Kac-Moody Lie algebra $HA_{1}^{(1)}$, J. Algebra 160 (1993), 492-593. MR 94i:17031
  • [Ka4] Kang, S.-J., On the hyperbolic Kac-Moody Lie algebra $HA_{1}^{(1)}$, Trans. Amer. Math. Soc. 341 (1994), 623-638. MR 94d:17035
  • [Ka5] Kang, S.-J., Root multiplicities of Kac-Moody algebras, Duke Math. J. 74 (1994), 635-666. MR 95c:17036
  • [Ka6] Kang, S.-J., Generalized Kac-Moody algebras and the modular function $j$, Math. Ann. 298 (1994), 373-384. MR 94m:17026
  • [Ka7] Kang, S.-J., Root multiplicities of graded Lie algebras, in Lie Algebras and Their Representations, S.-J. Kang, M.-H. Kim, I.-S. Lee (eds), Contemp. Math. 194 (1996), 161-176. MR 97e:17041
  • [Ka8] Kang, S.-J., Graded Lie superalgebras and the superdimension formula, J. Algebra 204 (1998), 597-655. CMP 98:13
  • [KaK1] Kang, S.-J., Kim, M.-H., Free Lie algebras, generalized Witt formula, and the denominator identity, J. Algebra 183 (1996), 560-594. MR 97e:17042
  • [KaK2] Kang, S.-J., Kim, M.-H., Borcherds superalgebras and a Monstrous Lie superalgebra, Math. Ann. 307 (1997), 677-694. CMP 97:16
  • [KMN] Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T., Nakayashiki, A., Affine crystals and vertex models, Inter. J. Mod. Phys. A7 Suppl. 1A (1992), 449-484. MR 94a:17008
  • [KM1] Kang, S.-J., Melville, D. J., Root multiplicities of the Kac-Moody algebras $HA_{n}^{(1)}$, J. Algebra 170 (1994), 277-299. MR 95m:17018
  • [KM2] Kang, S.-J., Melville, D. J., Rank 2 symmetric hyperbolic Kac-Moody algebras, Nagoya Math. J. 140 (1995), 41-75. MR 97c:17039
  • [Ko] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74 (1961), 329-387. MR 26:265
  • [LM] Lepowsky, J., Moody, R. V., Hyperbolic Lie algebras and quasi-regular cusps on Hilbert modular surfaces, Math. Ann. 245 (1979), 63-88. MR 81c:10030
  • [LZ] Lian, B. H., Zuckerman, G. J., Moonshine cohomology, in Finite Groups and Vertex Operator Algebras, RIMS publication (1995), 87-116. MR 96m:17051
  • [Li] Liu, L.-S., Kostant's formula for Kac-Moody Lie algebras, J. Algebra 149 (1992), 155-178. MR 93d:17011
  • [M] Macdonald, I. G., Affine root systems and Dedekind's $\eta $-function, Invent. Math. 15 (1972), 91-143. MR 50:9996
  • [Mo1] Moody, R. V., A new class of Lie algebras, J. Algebra 10 (1968), 211-230. MR 37:5261
  • [Mo2] Moody, R. V., Root systems of hyperbolic type, Adv. Math. 33 (1979), 144-160. MR 81g:17006
  • [N] Naito, S., The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras I: The existence of the resolution, Publ. RIMS, Kyoto Univ. 29 (1993), 709-730. MR 94k:17040
  • [P] Peterson, D. H., Freudenthal-type formulas for root and weight multiplicities, preprint (1983).
  • [S1] Serre, J. P., Lie Algebras and Lie Groups, Benjamin, New York, 1965. MR 36:1582
  • [S2] Serre, J. P., A Course in Arithmetic, Springer-Verlag, 1973. MR 49:8956
  • [SUM1] Sthanumoorthy, N., Uma Maheswari, A., Purely imaginary roots of Kac-Moody algebras, Commun. Algebra 24 (1996), 677-693. MR 97c:17041
  • [SUM2] Sthanumoorthy, N., Uma Maheswari, A., Root multiplicities of extended hyperbolic Kac-Moody algebras, Commun. Algebra 24 (1996), 4495-4512. MR 97j:17028
  • [T] Thompson, J. G., Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. Lond. Math. Soc. 11 (1979), 352-353. MR 81j:20030

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B01, 17B65, 17B70, 11F22

Retrieve articles in all journals with MSC (1991): 17B01, 17B65, 17B70, 11F22


Additional Information

Seok-Jin Kang
Affiliation: Department of Mathematics, Seoul National University, Seoul 151-742, Korea
Email: sjkang@math.snu.ac.kr

Myung-Hwan Kim
Affiliation: Department of Mathematics, Seoul National University, Seoul 151-742, Korea
Email: mhkim@math.snu.ac.kr

DOI: https://doi.org/10.1090/S0002-9947-99-02239-4
Received by editor(s): May 23, 1997
Published electronically: June 29, 1999
Additional Notes: This research was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society