Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An $L^{p}$ a priori estimate for the Tricomi equation in the upper half space


Author: Jong Uhn Kim
Journal: Trans. Amer. Math. Soc. 351 (1999), 4611-4628
MSC (1991): Primary 35J70, 35B45
DOI: https://doi.org/10.1090/S0002-9947-99-02349-1
Published electronically: July 19, 1999
MathSciNet review: 1615987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We establish an $L^{p}$ a priori estimate for the Tricomi equation. Our main tool is Mihlin's multiplier theorem combined with well-known estimates of the Newtonian potential.


References [Enhancements On Off] (What's this?)

  • 1. Bergh, J. and Löfström, J., ``Interpolation Spaces,'' Springer-Verlag, Berlin-Heidelberg-New York, 1976. MR 58:2349
  • 2. Boutet de Monvel, L., Hypoelliptic operators with double characteristics and related pseudodifferential operators, Comm. Pure Appl. Math. Vol 27, pp. 585-639, 1974. MR 51:6498
  • 3. Diaz, J.B. and Weinstein, A., On the fundamental solutions of a singular Beltrami operator, Studies in Mathematics and Mechanics presented to Richard von Mises, pp. 97-102, Academic Press, New York, 1954. MR 16:481c
  • 4. Erdélyi, A., ``Asymptotic Expansions,'' Dover Publications, New York, 1956. MR 17:1202c
  • 5. Germain, P. and Bader, R., Solutions élémentaires de certaines équations aux dérivées partielles du type mixte, Bull. Soc. Math. France, t.81, pp. 145-174, 1953. MR 15:432b
  • 6. Gilbarg, D. and Trudinger, N.S., `` Elliptic Partial Differential Equations of Second Order,'' second edition, Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR 86c:35035
  • 7. Glushko, V.P. and Savchenko, Yu.B., Higher-order degenerate elliptic equations: spaces, operators, boundary-value problems, J. Soviet Math. Vol 39, No 6, pp. 3088-3148, 1987.
  • 8. Hörmander, L., ``The Analysis of Linear Partial Differential Operators,'' Vol I and III, Springer-Verlag, Berlin-Heidelberg-New York, 1983. MR 85g:35002a; MR 85g:35002b
  • 9. Levendorskii, S., ``Degenerate Elliptic Equations,'' Kluwer Academic Publisher, Dordrecht-Boston-London, 1993. MR 95b:35079
  • 10. Oleinik, O.A. and Radkevi\v{c}, E.V., ``Second Order Equations with Nonnegative Characteristic Form,'' American Mathematical Society, Providence, R.I. and Plenum Press, New York-London, 1973. MR 56:16112
  • 11. Segala, F., Parametrices for operators of Tricomi type, Annali di Mat. Pura Appl., t.140, pp. 285-299, 1985. MR 87b:35065
  • 12. Segala, F., Parametrices for a class of differential operators with multiple characteristics, Annali di Mat. Pura Appl., t.146, pp. 311-336, 1987. MR 89c:35028
  • 13. Stein, E.M., `` Singular Integrals and Differentiability Properties of Functions,'' Princeton University Press, 1970. MR 44:7280
  • 14. Triebel, H., ``Interpolation Theory, Function Spaces, Differential Operators,'' North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 80i:46032b
  • 15. Visik, M.I. and Grusin, V.V., Boundary value problems for elliptic equations degenerate on the boundary of a domain, Math. USSR Sbornik, Vol 9, No 4, pp. 423-454, 1969. MR 41:2212

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35J70, 35B45

Retrieve articles in all journals with MSC (1991): 35J70, 35B45


Additional Information

Jong Uhn Kim
Affiliation: Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061-0123
Email: kim@math.vt.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02349-1
Keywords: $L^{p}$ a priori estimate, Tricomi equation, Newtonian potential, Fourier transform, Mihlin's multiplier theorem, Airy functions
Received by editor(s): December 30, 1996
Received by editor(s) in revised form: February 10, 1998
Published electronically: July 19, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society