Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A sharp version of Zhang's theorem
on truncating sequences of gradients


Author: Stefan Müller
Journal: Trans. Amer. Math. Soc. 351 (1999), 4585-4597
MSC (1991): Primary 49J45
Published electronically: July 21, 1999
MathSciNet review: 1675222
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K \subset \mathbf{R}^{mn}$ be a compact and convex set of $m \times n$ matrices and let $\{u_j\}$ be a sequence in $W_{\operatorname{loc}} ^{1,1}(\mathbf{R}^n;\mathbf{R}^m)$ that converges to $K$ in the mean, i.e. $\int _{\mathbf{R}^n} {\operatorname{dist}} (Du_j, K) \to 0$. I show that there exists a sequence $v_j$ of Lipschitz functions such that $\parallel\!\! {\operatorname{dist}} (Dv_j, K)\!\!\parallel _\infty \ \to 0$ and $\mathcal{L}^n (\{u_j \not= v_j\}) \to 0$. This refines a result of Kewei Zhang (Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), 313-326), who showed that one may assume $\parallel\!\!Dv_j\!\! \parallel _\infty \ \le C$. Applications to gradient Young measures and to a question of Kinderlehrer and Pedregal (Arch. Rational Mech. Anal. 115 (1991), 329-365) regarding the approximation of $\mathbf{R} \cup \{+\infty\}$ valued quasiconvex functions by finite ones are indicated. A challenging open problem is whether convexity of $K$ can be replaced by quasiconvexity.


References [Enhancements On Off] (What's this?)

  • 1. Emilio Acerbi and Nicola Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984), no. 2, 125–145. MR 751305, 10.1007/BF00275731
  • 2. Emilio Acerbi and Nicola Fusco, An approximation lemma for 𝑊^{1,𝑝} functions, Material instabilities in continuum mechanics (Edinburgh, 1985–1986), Oxford Sci. Publ., Oxford Univ. Press, New York, 1988, pp. 1–5. MR 970512
  • 3. John M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 4, 337–403. MR 0475169
  • 4. Bernard Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989. MR 990890
  • 5. Ivar Ekeland and Roger Temam, Convex analysis and variational problems, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. Translated from the French; Studies in Mathematics and its Applications, Vol. 1. MR 0463994
  • 6. Lawrence C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 74, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR 1034481
  • 7. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal. 29 (1998), 736-756. CMP 98:11
  • 8. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 9. David Kinderlehrer and Pablo Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), no. 4, 329–365. MR 1120852, 10.1007/BF00375279
  • 10. David Kinderlehrer and Pablo Pedregal, Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1994), no. 1, 59–90. MR 1274138, 10.1007/BF02921593
  • 11. J. Kristensen, Finite functionals and Young measures generated by gradients of Sobolev functions, Ph.D. Thesis, Technical University of Denmark, Lyngby.
  • 12. J. Kristensen, On the non-locality of quasiconvexity, Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999), 1-13.
  • 13. Fon Che Liu, A Luzin type property of Sobolev functions, Indiana Univ. Math. J. 26 (1977), no. 4, 645–651. MR 0450488
  • 14. Charles B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53. MR 0054865
  • 15. Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
  • 16. Pablo Pedregal, Parametrized measures and variational principles, Progress in Nonlinear Differential Equations and their Applications, 30, Birkhäuser Verlag, Basel, 1997. MR 1452107
  • 17. M. Sychev, A new approach to Young measure theory, relaxation and convergence in energy, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.
  • 18. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Differ. Geom. 17 (1982), 307-335; 18 (1983), 329. MR 84b:58037
  • 19. Richard Schoen and Karen Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), no. 2, 253–268. MR 710054
  • 20. Vladimír Šverák, Lower-semicontinuity of variational integrals and compensated compactness, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 1153–1158. MR 1404015
  • 21. Kewei Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19 (1992), no. 3, 313–326. MR 1205403

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 49J45

Retrieve articles in all journals with MSC (1991): 49J45


Additional Information

Stefan Müller
Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstr. 22-26, 04103 Leipzig, Germany
Email: sm@mis.mpg.de

DOI: https://doi.org/10.1090/S0002-9947-99-02520-9
Keywords: Young measures, quasiconvexity, truncation
Received by editor(s): June 23, 1997
Published electronically: July 21, 1999
Article copyright: © Copyright 1999 American Mathematical Society