*polynomial identities of matrices with the transpose involution: The low degrees
Authors:
Alain D'Amour and Michel Racine
Journal:
Trans. Amer. Math. Soc. 351 (1999), 50895106
MSC (1991):
Primary 16R10, 16R50
Published electronically:
May 21, 1999
MathSciNet review:
1603886
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In this paper, we investigate polynomial identities of minimal degree for the algebra of matrices over a field, where and is the transpose involution. We first present some basic generators, and then proceed to show that all other minimal degree identities can be derived from those.
 [1]
A.
S. Amitsur and J.
Levitzki, Minimal identities for
algebras, Proc. Amer. Math. Soc. 1 (1950), 449–463. MR 0036751
(12,155d), http://dx.doi.org/10.1090/S00029939195000367519
 [2]
S.
A. Amitsur, Identities in rings with involutions, Israel J.
Math. 7 (1969), 63–68. MR 0242889
(39 #4216)
 [3]
Vesselin
Drensky and Antonio
Giambruno, Cocharacters, codimensions and Hilbert series of the
polynomial identities for 2×2 matrices with involution, Canad.
J. Math. 46 (1994), no. 4, 718–733. MR 1289056
(95d:16028), http://dx.doi.org/10.4153/CJM19940406
 [4]
Antonino
Giambruno, On *polynomial identities for 𝑛×𝑛
matrices, J. Algebra 133 (1990), no. 2,
433–438. MR 1067416
(91g:16015), http://dx.doi.org/10.1016/00218693(90)90279W
 [5]
Bertram
Kostant, A theorem of Frobenius, a theorem of AmitsurLevitski and
cohomology theory, J. Math. Mech. 7 (1958),
237–264. MR 0092755
(19,1153e)
 [6]
Bertram
Kostant, A Lie algebra generalization of the AmitsurLevitski
theorem, Adv. in Math. 40 (1981), no. 2,
155–175. MR
619098 (82h:17008), http://dx.doi.org/10.1016/00018708(81)90061X
 [7]
Diana
V. Levchenko, Finite basis property of identities with involution
of a secondorder matrix algebra, Serdica 8 (1982),
no. 1, 42–56 (Russian). MR 680769
(84e:16008)
 [8]
D.
V. Levčenko, Identity with involution of a secondorder
matrix algebra, C. R. Acad. Bulgare Sci. 33 (1980),
no. 8, 1043–1045 (Russian). MR 620834
(82h:16011)
 [9]
Wen
Xin Ma, A decomposition of elements of the
free algebra, Proc. Amer. Math. Soc.
118 (1993), no. 1,
37–45. MR
1126198 (93g:16040), http://dx.doi.org/10.1090/S00029939199311261984
 [10]
S.
K. Jain, Generalizations of QFrings, and continuous and discrete
modules, Math. Student 57 (1989), no. 14,
219–224. MR 1037190
(91k:16018)
 [11]
Erhard
Neher, Jordan triple systems by the grid approach, Lecture
Notes in Mathematics, vol. 1280, SpringerVerlag, Berlin, 1987. MR 911879
(89b:17024)
 [12]
M.
L. Racine, Central polynomials for Jordan algebras. I, J.
Algebra 41 (1976), no. 1, 224–237. MR 0417246
(54 #5303)
 [13]
Michel
L. Racine, Minimal identities for Jordan algebras of degree 2,
Comm. Algebra 13 (1985), no. 12, 2493–2506. MR 811520
(87e:17026), http://dx.doi.org/10.1080/00927878508823287
 [14]
Ju.
P. Razmyslov, The existence of a finite basis for the identities of
the matrix algebra of order two over a field of characteristic zero,
Algebra i Logika 12 (1973), 83–113, 121 (Russian).
MR
0340348 (49 #5103)
 [15]
Louis
H. Rowen, Standard polynomials in matrix
algebras, Trans. Amer. Math. Soc. 190 (1974), 253–284. MR 0349715
(50 #2208), http://dx.doi.org/10.1090/S00029947197403497153
 [16]
Louis
Halle Rowen, Polynomial identities in ring theory, Pure and
Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace
Jovanovich, Publishers], New YorkLondon, 1980. MR 576061
(82a:16021)
 [17]
Louis
Halle Rowen, A simple proof of Kostant’s theorem, and an
analogue for the symplectic involution, Algebraists’ homage:
papers in ring theory and related topics (New Haven, Conn., 1981)
Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982,
pp. 207–215. MR 685953
(84d:16024)
 [1]
 Amitsur, A. S. and Levitzki, J., Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449463. MR 12:155d
 [2]
 Amitsur, A. S., Identities in rings with involution, Israel J. Math. 7 (1969), 6368. MR 39:4216
 [3]
 Drensky, Vesselin, and Giambruno, Antonio, Cocharacters, codimensions and Hilbert series of the polynomial identities for matrices with involution, Canad. J. Math. 46 (1994), 718733. MR 95d:16028
 [4]
 Giambruno, Antonio, On polynomial identities for matrices, J. Algebra 133 (1990) 433438. MR 91g:16015
 [5]
 Kostant, B., A theorem of Frobenius, a theorem of AmitsurLevitzki, and cohomology theory, Indiana J. Math. 7 (1958), 237264. MR 19:1153e
 [6]
 Kostant, B., A Lie algebra generalization of the AmitsurLevitzki theorem, Adv. in Math. 40 (1980), 155175. MR 82h:17008
 [7]
 Levchenko, Diana V., Finite basis property of identities with involution of a secondorder matrix algebra (Russian), Serdica 8 (1982), 4256. MR 84e:16008
 [8]
 Levchenko, Diana V., Identity with involution of a secondorder matrix algebra (Russian), C.R. Acad. Bulgare Sci. 33 (1980), 10431045. MR 82h:16011
 [9]
 Ma, W., A decomposition of elements of the free algebra, Proc. Amer. Math. Soc. 118 (1993), 3745. MR 93g:16040
 [10]
 Ma, W., Racine, M. L., Minimal identities of symmetric matrices, Trans. Amer. Math. Soc. 320 (1990), 171192. MR 91k:16018
 [11]
 Neher, E., Jordan Triple Systems by the Grid Approach, Lecture Notes in Mathematics 1280, Springer, New York, 193 pp. MR 89b:17024
 [12]
 Racine, M. L., Central polynomials for Jordan algebras I, J. Algebra 41 (1976) 224237. MR 54:5303
 [13]
 Racine, M. L., Minimal identities for Jordan algebras of degree 2, Comm. Alg. 5 (1985), 24932506. MR 87e:17026
 [14]
 Razmyslov, Y. P., Finite basing of the identities of a matrix algebra of second order over a field of characteristic 0, Algebra and Logic 12 (1973), 4763. MR 49:5103
 [15]
 Rowen, L. H., Standard polynomials in matrix algebras, Trans. Amer. Math. Soc. 190 (1974), 253284. MR 50:2208
 [16]
 Rowen, L. H., Polynomial Identities in Ring Theory, Academic Press, New York, 1980, 365 pp. MR 82a:16021
 [17]
 Rowen, L. H., A simple proof of Kostant's theorem and an analogue for the symplectic involution, Contemp. Math., vol. 13, Amer. Math. Soc. (1982), 207215. MR 84d:16024
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
16R10,
16R50
Retrieve articles in all journals
with MSC (1991):
16R10,
16R50
Additional Information
Alain D'Amour
Affiliation:
Department of Mathematics & Computer Science, Denison University, Granville, Ohio 43023
Email:
damour@cc.denison.edu
Michel Racine
Affiliation:
Department of Mathematics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
Email:
me@mathstat.uottawa.ca
DOI:
http://dx.doi.org/10.1090/S0002994799023016
PII:
S 00029947(99)023016
Received by editor(s):
May 18, 1997
Published electronically:
May 21, 1999
Additional Notes:
The second author’s research is supported in part by a grant from NSERC
Article copyright:
© Copyright 1999
American Mathematical Society
