*-polynomial identities of matrices

with the transpose involution:

The low degrees

Authors:
Alain D'Amour and Michel Racine

Journal:
Trans. Amer. Math. Soc. **351** (1999), 5089-5106

MSC (1991):
Primary 16R10, 16R50

Published electronically:
May 21, 1999

MathSciNet review:
1603886

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate -polynomial identities of minimal degree for the algebra of matrices over a field, where and is the transpose involution. We first present some basic generators, and then proceed to show that all other minimal degree identities can be derived from those.

**[1]**A. S. Amitsur and J. Levitzki,*Minimal identities for algebras*, Proc. Amer. Math. Soc.**1**(1950), 449–463. MR**0036751**, 10.1090/S0002-9939-1950-0036751-9**[2]**S. A. Amitsur,*Identities in rings with involutions*, Israel J. Math.**7**(1969), 63–68. MR**0242889****[3]**Vesselin Drensky and Antonio Giambruno,*Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution*, Canad. J. Math.**46**(1994), no. 4, 718–733. MR**1289056**, 10.4153/CJM-1994-040-6**[4]**Antonino Giambruno,*On *-polynomial identities for 𝑛×𝑛 matrices*, J. Algebra**133**(1990), no. 2, 433–438. MR**1067416**, 10.1016/0021-8693(90)90279-W**[5]**Bertram Kostant,*A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory*, J. Math. Mech.**7**(1958), 237–264. MR**0092755****[6]**Bertram Kostant,*A Lie algebra generalization of the Amitsur-Levitski theorem*, Adv. in Math.**40**(1981), no. 2, 155–175. MR**619098**, 10.1016/0001-8708(81)90061-X**[7]**Diana V. Levchenko,*Finite basis property of identities with involution of a second-order matrix algebra*, Serdica**8**(1982), no. 1, 42–56 (Russian). MR**680769****[8]**D. V. Levčenko,*Identity with involution of a second-order matrix algebra*, C. R. Acad. Bulgare Sci.**33**(1980), no. 8, 1043–1045 (Russian). MR**620834****[9]**Wen Xin Ma,*A decomposition of elements of the free algebra*, Proc. Amer. Math. Soc.**118**(1993), no. 1, 37–45. MR**1126198**, 10.1090/S0002-9939-1993-1126198-4**[10]**S. K. Jain,*Generalizations of QF-rings, and continuous and discrete modules*, Math. Student**57**(1989), no. 1-4, 219–224. MR**1037190****[11]**Erhard Neher,*Jordan triple systems by the grid approach*, Lecture Notes in Mathematics, vol. 1280, Springer-Verlag, Berlin, 1987. MR**911879****[12]**M. L. Racine,*Central polynomials for Jordan algebras. I*, J. Algebra**41**(1976), no. 1, 224–237. MR**0417246****[13]**Michel L. Racine,*Minimal identities for Jordan algebras of degree 2*, Comm. Algebra**13**(1985), no. 12, 2493–2506. MR**811520**, 10.1080/00927878508823287**[14]**Ju. P. Razmyslov,*The existence of a finite basis for the identities of the matrix algebra of order two over a field of characteristic zero*, Algebra i Logika**12**(1973), 83–113, 121 (Russian). MR**0340348****[15]**Louis H. Rowen,*Standard polynomials in matrix algebras*, Trans. Amer. Math. Soc.**190**(1974), 253–284. MR**0349715**, 10.1090/S0002-9947-1974-0349715-3**[16]**Louis Halle Rowen,*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061****[17]**Louis Halle Rowen,*A simple proof of Kostant’s theorem, and an analogue for the symplectic involution*, Algebraists’ homage: papers in ring theory and related topics (New Haven, Conn., 1981) Contemp. Math., vol. 13, Amer. Math. Soc., Providence, R.I., 1982, pp. 207–215. MR**685953**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
16R10,
16R50

Retrieve articles in all journals with MSC (1991): 16R10, 16R50

Additional Information

**Alain D'Amour**

Affiliation:
Department of Mathematics & Computer Science, Denison University, Granville, Ohio 43023

Email:
damour@cc.denison.edu

**Michel Racine**

Affiliation:
Department of Mathematics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada

Email:
me@mathstat.uottawa.ca

DOI:
https://doi.org/10.1090/S0002-9947-99-02301-6

Received by editor(s):
May 18, 1997

Published electronically:
May 21, 1999

Additional Notes:
The second author’s research is supported in part by a grant from NSERC

Article copyright:
© Copyright 1999
American Mathematical Society