Closed incompressible surfaces

in knot complements

Authors:
Elizabeth Finkelstein and Yoav Moriah

Journal:
Trans. Amer. Math. Soc. **352** (2000), 655-677

MSC (1991):
Primary 57M25, 57M99, 57N10

Published electronically:
September 9, 1999

MathSciNet review:
1487613

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we show that given a knot or link in a -plat projection with and , where is the length of the plat, if the twist coefficients all satisfy then has at least nonisotopic essential meridional planar surfaces. In particular if is a knot then contains closed incompressible surfaces. In this case the closed surfaces remain incompressible after all surgeries except perhaps along a ray of surgery coefficients in .

**[BZ]**Gerhard Burde and Heiner Zieschang,*Knots*, de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 1985. MR**808776****[CGLS]**Marc Culler, C. McA. Gordon, J. Luecke, and Peter B. Shalen,*Dehn surgery on knots*, Ann. of Math. (2)**125**(1987), no. 2, 237–300. MR**881270**, 10.2307/1971311**[CL]**D. Cooper and D. D. Long,*Derivative varieties and the pure braid group*, Amer. J. Math.**115**(1993), no. 1, 137–160. MR**1209237**, 10.2307/2374725**[Fi]**E. Finkelstein,*Closed incompressible surfaces in closed braid complements*, J. Knot Theory Ramifications**7**(1998), 335-379. CMP**98:13****[GL]**C. McA. Gordon and J. Luecke,*Reducible manifolds and Dehn surgery*, Topology**35**(1996), no. 2, 385–409. MR**1380506**, 10.1016/0040-9383(95)00016-X**[GR]**C. McA. Gordon and A. W. Reid,*Tangle decompositions of tunnel number one knots and links*, J. Knot Theory Ramifications**4**(1995), no. 3, 389–409. MR**1347361**, 10.1142/S0218216595000193**[He]**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****[JS]**William H. Jaco and Peter B. Shalen,*Seifert fibered spaces in 3-manifolds*, Mem. Amer. Math. Soc.**21**(1979), no. 220, viii+192. MR**539411**, 10.1090/memo/0220**[HK]**D. Heath and T. Kobayashi,*A search method for a thin position of a link*, preprint.**[LM]**Martin Lustig and Yoav Moriah,*Generalized Montesinos knots, tunnels and 𝒩-torsion*, Math. Ann.**295**(1993), no. 1, 167–189. MR**1198847**, 10.1007/BF01444882**[LP]**María Teresa Lozano and Józef H. Przytycki,*Incompressible surfaces in the exterior of a closed 3-braid. I. Surfaces with horizontal boundary components*, Math. Proc. Cambridge Philos. Soc.**98**(1985), no. 2, 275–299. MR**795894**, 10.1017/S0305004100063465**[Ly]**Herbert C. Lyon,*Incompressible surfaces in knot spaces*, Trans. Amer. Math. Soc.**157**(1971), 53–62. MR**0275412**, 10.1090/S0002-9947-1971-0275412-6**[Me]**W. Menasco,*Closed incompressible surfaces in alternating knot and link complements*, Topology**23**(1984), no. 1, 37–44. MR**721450**, 10.1016/0040-9383(84)90023-5**[Oe]**Ulrich Oertel,*Closed incompressible surfaces in complements of star links*, Pacific J. Math.**111**(1984), no. 1, 209–230. MR**732067****[Sh]**Hamish Short,*Some closed incompressible surfaces in knot complements which survive surgery*, Low-dimensional topology (Chelwood Gate, 1982) London Math. Soc. Lecture Note Ser., vol. 95, Cambridge Univ. Press, Cambridge, 1985, pp. 179–194. MR**827302**, 10.1017/CBO9780511662744.007**[Sw]**G. Ananda Swarup,*On incompressible surfaces in the complements of knots*, J. Indian Math. Soc. (N.S.)**37**(1973), 9–24 (1974). MR**0362315****[Th]**Abigail Thompson,*Thin position and bridge number for knots in the 3-sphere*, Topology**36**(1997), no. 2, 505–507. MR**1415602**, 10.1016/0040-9383(96)00010-9**[Wu 1]**Ying Qing Wu,*Incompressibility of surfaces in surgered 3-manifolds*, Topology**31**(1992), no. 2, 271–279. MR**1167169**, 10.1016/0040-9383(92)90020-I**[Wu 2]**Ying-Qing Wu,*The classification of nonsimple algebraic tangles*, Math. Ann.**304**(1996), no. 3, 457–480. MR**1375620**, 10.1007/BF01446301

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
57M25,
57M99,
57N10

Retrieve articles in all journals with MSC (1991): 57M25, 57M99, 57N10

Additional Information

**Elizabeth Finkelstein**

Affiliation:
Department of Mathematics, (CUNY) Hunter College, New York, New York 10021

Email:
efinkels@shiva.hunter.cuny.edu

**Yoav Moriah**

Affiliation:
Department of Mathematics, Technion, Haifa 32000, Israel

Email:
ymoriah@techunix.technion.ac.il

DOI:
http://dx.doi.org/10.1090/S0002-9947-99-02233-3

Received by editor(s):
May 23, 1996

Received by editor(s) in revised form:
October 10, 1997

Published electronically:
September 9, 1999

Article copyright:
© Copyright 1999
American Mathematical Society