Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the module structure of free L ie algebras


Authors: R. M. Bryant and Ralph Stöhr
Journal: Trans. Amer. Math. Soc. 352 (2000), 901-934
MSC (1991): Primary 17B01; Secondary 20C20
DOI: https://doi.org/10.1090/S0002-9947-99-02369-7
Published electronically: October 6, 1999
MathSciNet review: 1621725
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the free Lie algebra $L$ over a field of non-zero characteristic $p$ as a module for the cyclic group of order $p$ acting on $L$ by cyclically permuting the elements of a free generating set. Our main result is a complete decomposition of $L$ as a direct sum of indecomposable modules.


References [Enhancements On Off] (What's this?)

  • [1] Yu. A. Bakhturin, Identical Relations in Lie Algebras, Nauka, Moscow, 1985 (Russian). English translation: VNU Science Press, Utrecht, 1987. MR 88f:17032
  • [2] A. Brandt, `The free Lie ring and Lie representations of the full linear group', Trans. Amer. Math. Soc., 56 (1944), 528-536. MR 6:146d
  • [3] R. M. Bryant, `Cyclic groups acting on free Lie algebras', in P. H. Kropholler, G. A. Niblo and R. Stöhr (editors) `Geometry and Cohomology in Group Theory', London Mathematical Society Lecture Note Series, 252, Cambridge University Press, Cambridge, 1998, pp. 39-44.
  • [4] R. M. Bryant and R. Stöhr, `Fixed points of automorphisms of free Lie algebras', Arch. Math., 67 (1996), 281-289. MR 97m:17008
  • [5] S. Donkin and K. Erdmann, `Tilting modules, symmetric functions and the module structure of the free Lie algebra', J. Algebra, 203 (1998), 69-90. MR 99e:20056
  • [6] N. Jacobson, Lie Algebras, Interscience, New York, 1962. MR 26:1345
  • [7] L. G. Kovács and R. Stöhr, `Lie powers of the natural module for $GL(2)$', J. Algebra, to appear.
  • [8] G. P. Kukin, `The subalgebras of free Lie $p$-algebras', Algebra i Logika, 11 (1972), 535-550. MR 47:6798
  • [9] C. Reutenauer, Free Lie Algebras, Clarendon Press, Oxford, 1993. MR 94j:17002
  • [10] M. W. Short, `A conjecture about free Lie algebras', Commun. Algebra, 23 (1995), 3051-3057. MR 96c:17007
  • [11] R. Stöhr, `On torsion in free central extensions of some torsion-free groups', J. Pure Appl. Algebra, 46 (1987), 249-289. MR 88j:20032
  • [12] R. M. Thrall, `On symmetrized Kronecker powers and the structure of the free Lie ring', Amer. J. Math., 64 (1942), 371-388. MR 3:262d
  • [13] G. E. Wall, `On the Lie ring of a group of prime exponent', in `Proc. Second Internat. Conf. Theory of Groups, Canberra, 1973', Lecture Notes in Mathematics, 372, Springer, Berlin, etc., 1974, pp. 667-690. MR 50:10098
  • [14] F. Wever, `Über Invarianten von Lieschen Ringen', Math. Annalen, 120 (1949), 563-580. MR 10:676e
  • [15] E. Witt, `Die Unterringe der freien Lieschen Ringe', Math. Z., 64 (1956), 195-216. MR 17:1050a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 17B01, 20C20

Retrieve articles in all journals with MSC (1991): 17B01, 20C20


Additional Information

R. M. Bryant
Affiliation: Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom
Email: bryant@umist.ac.uk

Ralph Stöhr
Affiliation: Department of Mathematics, UMIST, Manchester M60 1QD, United Kingdom
Email: r.stohr@umist.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-99-02369-7
Received by editor(s): August 20, 1997
Published electronically: October 6, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society