Products and duality in Waldhausen categories

Authors:
Michael S. Weiss and Bruce Williams

Journal:
Trans. Amer. Math. Soc. **352** (2000), 689-709

MSC (1991):
Primary 57N99, 57R50, 19D10

DOI:
https://doi.org/10.1090/S0002-9947-99-02552-0

Published electronically:
October 5, 1999

MathSciNet review:
1694381

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The natural transformation from -theory to the Tate cohomology of acting on -theory commutes with external products. Corollary: The Tate cohomology of acting on the -theory of any ring with involution is a generalized Eilenberg-Mac Lane spectrum, and it is 4-periodic.

**[ABS]**M. Atiyah, R. Bott, A. Shapiro,*Clifford modules*, Topology**3**(1964), 13-38 suppl. MR**29:5250****[Ad1]**J. F. Adams,*Stable homotopy and generalised homology*, Chicago Lectures in Math., University of Chicago Press, 1974. MR**53:6534****[Ad2]**J. F. Adams,*Vector fields on spheres*, Ann. of Math.**75**(1962), 603-632. MR**25:2614****[AdCoDw]**A. Adem, R. L. Cohen and W. G. Dwyer,*Generalized Tate Homology, Homotopy fixed points, and the transfer*, Proc.of 1988 Northw.Univ.Conf.on Alg.Topology, Contemp.Math.**96**(1989). MR**90k:55012****[At]**M. Atiyah,*Immersions and imbeddings of manifolds*, Topology**1**(1962), 125-132. MR**26:3080****[AtSe]**M. Atiyah and G. Segal,*Equivariant K-theory and completion*, J. Diff. Geom.**3**(1969), 1-18. MR**41:4575****[Car]**G. Carlsson,*Equivariant stable homotopy and Segal's Burnside ring conjecture*, Annals of Math.**120**(1984), 189-224. MR**86f:57036****[Cu]**E. B. Curtis,*Simplicial homotopy theory*, Adv. in Math.**40**(1971), 107-209. MR**43:5529****[GreMa]**J. P. C.Greenlees and J.P.May,*Generalized Tate, Borel and CoBorel Cohomology*, University of Chicago Preprint, 1992.**[Le]**D. W. Lewis,*Forms over real algebras and the multisignature of a manifold*, Advances in Math**23**(1977), 272-284. MR**54:12646****[Lin]**W. H. Lin,*On conjectures of Mahowald, Segal and Sullivan*, Math. Proc. Camb. Phil. Soc.**87**(1980), 449-458. MR**81e:55020****[Ran1]**A. Ranicki,*The algebraic Theory of Surgery, I, II*, Proc.Lond.Math.Soc. (3)**40**(1980), 87-283. MR**82f:57024a**; MR**82f:57024b****[Ran2]**A. Ranicki,*Algebraic L-theory and topological manifolds*, Cambridge Tracts in Mathematics, Cambridge Univ.Press, Cambridge, GB, 1992. MR**94i:57051****[Seg]**G. Segal,*Categories and cohomology theories*, Topology**13**(1974), 293-312. MR**50:5782****[TW]**L. Taylor and B. Williams,*Surgery spaces: formulae and structure*, pp. 170-195 in Proc. 1978 Waterloo Algebraic Topology Conf., Lecture Notes in Math. 741, Springer 1979. MR**81k:57034****[Vo]**W. Vogell,*The involution in the algebraic K-theory of spaces*, Proc.of 1983 Rutgers Conf.on Alg. Topology, Springer Lect.Notes in Math.1126 (1985), 277-317. MR**87e:55009****[Wa]**C. T. C. Wall,*Classification of hermitian forms. VI. Group rings*, Ann. of Math.**103**(1976), 1-80. MR**55:5720****[Wald]**F. Waldhausen,*Algebraic K-theory of Spaces*, Proc. of 1983 Rutgers Conf. on Algebraic Topology, Springer Lect.Notes in Math.1126 (1985), 318-419. MR**86m:18011****[WW2]**M. Weiss and B. Williams,*Automorphisms of Manifolds and Algebraic K-Theory: II,*

J.Pure and Appl.Algebra**62**(1989), 47-107. MR**91e:57055****[WWaut]**M. Weiss and B. Williams,*Automorphisms of manifolds*, to appear in one of two C.T.C. Wall 60'th Birthday celebration volumes, 1999.**[WWd]**M. Weiss and B. Williams,*Duality in Waldhausen categories*, Forum Math.**10**(1998), 533-603. MR**99g:19002**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
57N99,
57R50,
19D10

Retrieve articles in all journals with MSC (1991): 57N99, 57R50, 19D10

Additional Information

**Michael S. Weiss**

Affiliation:
Department of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, U.K.

Email:
m.weiss@maths.abdn.ac.uk

**Bruce Williams**

Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Email:
williams.4@nd.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02552-0

Keywords:
Products,
ring spectrum,
Tate cohomology,
surgery

Received by editor(s):
January 9, 1997

Published electronically:
October 5, 1999

Additional Notes:
Both authors supported in part by NSF grant.

Article copyright:
© Copyright 1999
American Mathematical Society