Double coset density

in classical algebraic groups

Author:
Jonathan Brundan

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1405-1436

MSC (2000):
Primary 20G15

DOI:
https://doi.org/10.1090/S0002-9947-99-02258-8

Published electronically:
October 21, 1999

MathSciNet review:
1751310

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all pairs of reductive maximal connected subgroups of a classical algebraic group that have a dense double coset in . Using this, we show that for an arbitrary pair of reductive subgroups of a reductive group satisfying a certain mild technical condition, there is a dense -double coset in precisely when is a factorization.

**[ABS]**H. Azad, M. Barry, and G. M. Seitz,*On the structure of parabolic subgroups*, Comm. in Alg., 18:551-562, 1990. MR**91d:20048****[Borel]**A. Borel,*Linear Algebraic Groups*, Springer-Verlag, New York, second edition, 1991. MR**92d:20001****[B1]**J. W. Brundan,*Double cosets in algebraic groups*, PhD thesis, Imperial College, London, 1996.**[B2]**-,*Double coset density in exceptional algebraic groups*, to appear in J. London Math. Soc., 58:63-83, 1998. CMP**99:07****[B3]**-,*Multiplicity-free subgroups of reductive algebraic groups*, J. Algebra, 188:310-330, 1997. MR**97m:20052****[Ch1]**Z. Chen,*A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic*, I, Acta Math. Sinica, 2:168-177, 1986. MR**88f:20061****[Ch2]**-,*A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic*, II, Ann. Math. Ser. A, 9:10-22, 1988. MR**90g:20063****[CC]**A. M. Cohen and B. N. Cooperstein,*The -spaces of the standard -module*, Geom. Ded., 25:467-480, 1988. MR**89g:51013****[GW]**R. Gow and W. Willems,*Methods to decide if simple self-dual modules over fields of characteristic are of quadratic type*, J. Algebra, 175:1067-1081, 1995. MR**96h:20017****[GS]**R. M. Guralnick and G. M. Seitz,*Irreducible subgroups of orthogonal and symplectic groups with finitely many orbits on singular -spaces*, in preparation, 1997.**[GLMS]**R. M. Guralnick, M. W. Liebeck, H. D. Macpherson, and G. M. Seitz,*Modules for algebraic groups with finitely many orbits*, J. Algebra, 196:211-250, 1997. MR**98j:20058****[Hab]**W. Haboush,*Reductive groups are geometrically reductive*, Ann. of Math., 102:67-84, 1975. MR**52:3179****[H1]**J. E. Humphreys,*Linear Algebraic Groups*, Springer-Verlag, New York, third edition, 1987. MR**53:633****[H2]**-,*Introduction to Lie Algebras and Representation Theory*, Springer-Verlag, New York, sixth edition, 1994. MR**81b:17007****[Kac]**V. G. Kac,*Some remarks on nilpotent orbits*, J. Algebra, 6:190-213, 1980. MR**81i:17005****[L]**M. W. Liebeck,*The affine permutation groups of rank three*, Proc. London Math. Soc., 54:477-516, 1987. MR**88m:20004****[LSS]**M. W. Liebeck, J. Saxl, and G. M. Seitz,*Factorizations of simple algebraic groups*, Trans. Amer. Math. Soc., 348:799-822, 1996. MR**96g:20064****[LS]**M. W. Liebeck and G. M. Seitz,*Reductive subgroups of exceptional algebraic groups*, Mem. Amer. Math. Soc., No. 580, 1996. MR**96i:20059****[Lu]**D. Luna,*Sur les orbites fermées des groupes algébrique réductifs*, Invent. Math., 16:1-5, 1972. MR**45:3421****[Ros]**M. Rosenlicht,*Some basic theorems on algebraic groups*, Amer. J. Math., 78:401-443, 1956. MR**18:514a****[SK]**M. Sato and T. Kimura,*A classification of irreducible prehomogeneous vector spaces and their relative invariants*, Nagoya Math. J., 65:1-155, 1977. MR**55:3341****[Se]**G. M. Seitz,*The maximal subgroups of classical algebraic groups*, Mem. Amer. Math. Soc., No. 365, 1987. MR**88g:20092****[S1]**R. Steinberg,*Endomorphisms of linear algebraic groups*, Mem. Amer. Math. Soc., No. 80, 1968. MR**37:6288****[S2]**-,*Conjugacy Classes in Algebraic Groups*, volume 366 of Lecture Notes in Math., Springer, Berlin, 1974. MR**50:4766**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20G15

Retrieve articles in all journals with MSC (2000): 20G15

Additional Information

**Jonathan Brundan**

Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

Email:
brundan@darkwing.uoregon.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02258-8

Received by editor(s):
February 12, 1997

Received by editor(s) in revised form:
September 17, 1997

Published electronically:
October 21, 1999

Article copyright:
© Copyright 1999
American Mathematical Society