Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Double coset density
in classical algebraic groups


Author: Jonathan Brundan
Journal: Trans. Amer. Math. Soc. 352 (2000), 1405-1436
MSC (2000): Primary 20G15
DOI: https://doi.org/10.1090/S0002-9947-99-02258-8
Published electronically: October 21, 1999
MathSciNet review: 1751310
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all pairs of reductive maximal connected subgroups of a classical algebraic group $G$ that have a dense double coset in $G$. Using this, we show that for an arbitrary pair $(H, K)$ of reductive subgroups of a reductive group $G$ satisfying a certain mild technical condition, there is a dense $H, K$-double coset in $G$ precisely when $G = HK$ is a factorization.


References [Enhancements On Off] (What's this?)

  • [ABS] H. Azad, M. Barry, and G. M. Seitz, On the structure of parabolic subgroups, Comm. in Alg., 18:551-562, 1990. MR 91d:20048
  • [Borel] A. Borel, Linear Algebraic Groups, Springer-Verlag, New York, second edition, 1991. MR 92d:20001
  • [B1] J. W. Brundan, Double cosets in algebraic groups, PhD thesis, Imperial College, London, 1996.
  • [B2] -, Double coset density in exceptional algebraic groups, to appear in J. London Math. Soc., 58:63-83, 1998. CMP 99:07
  • [B3] -, Multiplicity-free subgroups of reductive algebraic groups, J. Algebra, 188:310-330, 1997. MR 97m:20052
  • [Ch1] Z. Chen, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic $2$, I, Acta Math. Sinica, 2:168-177, 1986. MR 88f:20061
  • [Ch2] -, A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic $p$, II, Ann. Math. Ser. A, 9:10-22, 1988. MR 90g:20063
  • [CC] A. M. Cohen and B. N. Cooperstein, The $2$-spaces of the standard $E_6(q)$-module, Geom. Ded., 25:467-480, 1988. MR 89g:51013
  • [GW] R. Gow and W. Willems, Methods to decide if simple self-dual modules over fields of characteristic $2$ are of quadratic type, J. Algebra, 175:1067-1081, 1995. MR 96h:20017
  • [GS] R. M. Guralnick and G. M. Seitz, Irreducible subgroups of orthogonal and symplectic groups with finitely many orbits on singular $k$-spaces, in preparation, 1997.
  • [GLMS] R. M. Guralnick, M. W. Liebeck, H. D. Macpherson, and G. M. Seitz, Modules for algebraic groups with finitely many orbits, J. Algebra, 196:211-250, 1997. MR 98j:20058
  • [Hab] W. Haboush, Reductive groups are geometrically reductive, Ann. of Math., 102:67-84, 1975. MR 52:3179
  • [H1] J. E. Humphreys, Linear Algebraic Groups, Springer-Verlag, New York, third edition, 1987. MR 53:633
  • [H2] -, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, sixth edition, 1994. MR 81b:17007
  • [Kac] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra, 6:190-213, 1980. MR 81i:17005
  • [L] M. W. Liebeck, The affine permutation groups of rank three, Proc. London Math. Soc., 54:477-516, 1987. MR 88m:20004
  • [LSS] M. W. Liebeck, J. Saxl, and G. M. Seitz, Factorizations of simple algebraic groups, Trans. Amer. Math. Soc., 348:799-822, 1996. MR 96g:20064
  • [LS] M. W. Liebeck and G. M. Seitz, Reductive subgroups of exceptional algebraic groups, Mem. Amer. Math. Soc., No. 580, 1996. MR 96i:20059
  • [Lu] D. Luna, Sur les orbites fermées des groupes algébrique réductifs, Invent. Math., 16:1-5, 1972. MR 45:3421
  • [Ros] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., 78:401-443, 1956. MR 18:514a
  • [SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65:1-155, 1977. MR 55:3341
  • [Se] G. M. Seitz, The maximal subgroups of classical algebraic groups, Mem. Amer. Math. Soc., No. 365, 1987. MR 88g:20092
  • [S1] R. Steinberg, Endomorphisms of linear algebraic groups, Mem. Amer. Math. Soc., No. 80, 1968. MR 37:6288
  • [S2] -, Conjugacy Classes in Algebraic Groups, volume 366 of Lecture Notes in Math., Springer, Berlin, 1974. MR 50:4766

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G15

Retrieve articles in all journals with MSC (2000): 20G15


Additional Information

Jonathan Brundan
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222
Email: brundan@darkwing.uoregon.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02258-8
Received by editor(s): February 12, 1997
Received by editor(s) in revised form: September 17, 1997
Published electronically: October 21, 1999
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society