Double coset density

in classical algebraic groups

Author:
Jonathan Brundan

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1405-1436

MSC (2000):
Primary 20G15

Published electronically:
October 21, 1999

MathSciNet review:
1751310

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all pairs of reductive maximal connected subgroups of a classical algebraic group that have a dense double coset in . Using this, we show that for an arbitrary pair of reductive subgroups of a reductive group satisfying a certain mild technical condition, there is a dense -double coset in precisely when is a factorization.

**[ABS]**H. Azad, M. Barry, and G. Seitz,*On the structure of parabolic subgroups*, Comm. Algebra**18**(1990), no. 2, 551–562. MR**1047327**, 10.1080/00927879008823931**[Borel]**Armand Borel,*Linear algebraic groups*, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR**1102012****[B1]**J. W. Brundan,*Double cosets in algebraic groups*, PhD thesis, Imperial College, London, 1996.**[B2]**-,*Double coset density in exceptional algebraic groups*, to appear in J. London Math. Soc., 58:63-83, 1998. CMP**99:07****[B3]**Jonathan Brundan,*Multiplicity-free subgroups of reductive algebraic groups*, J. Algebra**188**(1997), no. 1, 310–330. MR**1432359**, 10.1006/jabr.1996.6805**[Ch1]**Zhi Jie Chen,*A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic 2. I*, Acta Math. Sinica (N.S.)**2**(1986), no. 2, 168–177. MR**877380**, 10.1007/BF02564878**[Ch2]**Zhi Jie Chen,*A classification of irreducible prehomogeneous vector spaces over an algebraically closed field of characteristic 𝑝. II*, Chinese Ann. Math. Ser. A**9**(1988), no. 1, 10–22 (Chinese). MR**997554****[CC]**Yanez Ushan,*𝑘-⟨2⟩-seminets*, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat.**16**(1986), no. 2, 173–196 (Russian, with Serbo-Croatian summary). MR**939347****[GW]**Roderick Gow and Wolfgang Willems,*Methods to decide if simple self-dual modules over fields of characteristic 2 are of quadratic type*, J. Algebra**175**(1995), no. 3, 1067–1081. MR**1341759**, 10.1006/jabr.1995.1227**[GS]**R. M. Guralnick and G. M. Seitz,*Irreducible subgroups of orthogonal and symplectic groups with finitely many orbits on singular -spaces*, in preparation, 1997.**[GLMS]**Robert M. Guralnick, Martin W. Liebeck, Dugald Macpherson, and Gary M. Seitz,*Modules for algebraic groups with finitely many orbits on subspaces*, J. Algebra**196**(1997), no. 1, 211–250. MR**1474171**, 10.1006/jabr.1997.7068**[Hab]**W. J. Haboush,*Reductive groups are geometrically reductive*, Ann. of Math. (2)**102**(1975), no. 1, 67–83. MR**0382294****[H1]**James E. Humphreys,*Linear algebraic groups*, Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21. MR**0396773****[H2]**James E. Humphreys,*Introduction to Lie algebras and representation theory*, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR**499562****[Kac]**V. G. Kac,*Some remarks on nilpotent orbits*, J. Algebra**64**(1980), no. 1, 190–213. MR**575790**, 10.1016/0021-8693(80)90141-6**[L]**Martin W. Liebeck,*The affine permutation groups of rank three*, Proc. London Math. Soc. (3)**54**(1987), no. 3, 477–516. MR**879395**, 10.1112/plms/s3-54.3.477**[LSS]**Martin W. Liebeck, Jan Saxl, and Gary M. Seitz,*Factorizations of simple algebraic groups*, Trans. Amer. Math. Soc.**348**(1996), no. 2, 799–822. MR**1316858**, 10.1090/S0002-9947-96-01447-X**[LS]**Martin W. Liebeck and Gary M. Seitz,*Reductive subgroups of exceptional algebraic groups*, Mem. Amer. Math. Soc.**121**(1996), no. 580, vi+111. MR**1329942**, 10.1090/memo/0580**[Lu]**Domingo Luna,*Sur les orbites fermées des groupes algébriques réductifs*, Invent. Math.**16**(1972), 1–5 (French). MR**0294351****[Ros]**Maxwell Rosenlicht,*Some basic theorems on algebraic groups*, Amer. J. Math.**78**(1956), 401–443. MR**0082183****[SK]**M. Sato and T. Kimura,*A classification of irreducible prehomogeneous vector spaces and their relative invariants*, Nagoya Math. J.**65**(1977), 1–155. MR**0430336****[Se]**Gary M. Seitz,*The maximal subgroups of classical algebraic groups*, Mem. Amer. Math. Soc.**67**(1987), no. 365, iv+286. MR**888704**, 10.1090/memo/0365**[S1]**Robert Steinberg,*Endomorphisms of linear algebraic groups*, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR**0230728****[S2]**Robert Steinberg,*Conjugacy classes in algebraic groups*, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin-New York, 1974. Notes by Vinay V. Deodhar. MR**0352279**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
20G15

Retrieve articles in all journals with MSC (2000): 20G15

Additional Information

**Jonathan Brundan**

Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403-1222

Email:
brundan@darkwing.uoregon.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02258-8

Received by editor(s):
February 12, 1997

Received by editor(s) in revised form:
September 17, 1997

Published electronically:
October 21, 1999

Article copyright:
© Copyright 1999
American Mathematical Society