Odd primary resolutions and classification of the stable summands of stunted lens spaces
Author:
Jesús González
Journal:
Trans. Amer. Math. Soc. 352 (2000), 11491169
MSC (1991):
Primary 55P15; Secondary 55N20, 55P42, 55Q50, 55T15.
Published electronically:
March 10, 1999
MathSciNet review:
1491866
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The classification of the stable homotopy types of stunted lens spaces and their stable summands can be obtained by proving the triviality of certain stable classes in the homotopy groups of these spaces. This is achieved in the 2primary case by Davis and Mahowald using classical Adams spectral sequence techniques. We obtain the odd primary analogue using the corresponding Adams spectral sequence based at the spectrum representing odd primary connective theory. The methods allow us to answer a stronger problem: the determination of the smallest stunted space where such stable classes remain null homotopic. A technical problem prevents us from giving an answer in all situations; however, in a quantitative way, the number of cases missed is very small.
 1.
J.
F. Adams, Lectures on generalised cohomology, Category Theory,
Homology Theory and their Applications, III (Battelle Institute Conference,
Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969,
pp. 1–138. MR 0251716
(40 #4943)
 2.
J.
Hejtmanek, Scattering theory of the linear Boltzmannoperator,
Methoden und Verfahren der mathematischen Physik, Band 9,
Bibliographisches Institut, Mannheim, 1973, pp. 183–201. MR 0364905
(51 #1159)
 3.
Donald
M. Davis, Odd primary 𝑏𝑜resolutions and
𝐾theory localization, Illinois J. Math. 30
(1986), no. 1, 79–100. MR 822385
(87g:55026)
 4.
Kh.
N. Inasaridze, Characterization of exact bifunctor homology
theories, Soobshch. Akad. Nauk Gruzin. SSR 121
(1986), no. 2, 241–243 (Russian, with English and Georgian
summaries). MR
863395 (88a:55006)
 5.
Donald
M. Davis and Mark
Mahowald, The image of the stable 𝐽homomorphism,
Topology 28 (1989), no. 1, 39–58. MR 991098
(90c:55013), http://dx.doi.org/10.1016/00409383(89)900311
 6.
S.
Feder, S.
Gitler, and K.
Y. Lam, Composition properties of projective homotopy classes,
Pacific J. Math. 68 (1977), no. 1, 47–61. MR 0515518
(58 #24263)
 7.
J. González. The regular complex in the Adams spectral sequence. Trans. Amer. Math. Soc. 350 (1998), 26292664. CMP 98:11
 8.
J. González. A vanishing line in the Adams spectral sequence. To appear in Topology.
 9.
Jesus
Gonzalez, Classification of the stable homotopy types of stunted
lens spaces for an odd prime, Pacific J. Math. 176
(1996), no. 2, 325–343. MR 1434994
(97m:55011)
 10.
David
Copeland Johnson and W.
Stephen Wilson, Projective dimension and BrownPeterson
homology, Topology 12 (1973), 327–353. MR 0334257
(48 #12576)
 11.
Richard
M. Kane, Operations in connective 𝐾theory, Mem. Amer.
Math. Soc. 34 (1981), no. 254, vi+102. MR 634210
(82m:55025), http://dx.doi.org/10.1090/memo/0254
 12.
Wolfgang
Lellmann, Operations and cooperations in oddprimary connective
𝐾theory, J. London Math. Soc. (2) 29 (1984),
no. 3, 562–576. MR 754942
(88a:55020), http://dx.doi.org/10.1112/jlms/s229.3.562
 13.
Wolfgang
Lellmann and Mark
Mahowald, The 𝑏𝑜Adams spectral
sequence, Trans. Amer. Math. Soc.
300 (1987), no. 2,
593–623. MR
876468 (88c:55023), http://dx.doi.org/10.1090/S00029947198708764681
 14.
Robert
D. Thompson, The 𝑣₁periodic
homotopy groups of an unstable sphere at odd primes, Trans. Amer. Math. Soc. 319 (1990), no. 2, 535–559. MR 1010890
(90j:55021), http://dx.doi.org/10.1090/S00029947199010108908
 1.
 J. F. Adams. Lectures in generalised cohomology. Lecture Notes in Math., 99:1138, 1969. MR 40:4943
 2.
 S. Araki. Typical formal groups in complex cobordism and theory. Lectures in Math., Kyoto Univ., Kinokuniya, 6, 1973. MR 51:1159
 3.
 D. M. Davis. Odd primary resolutions and theory localization. Illinois J. Math., 30(1):79100, 1986. MR 87g:55026
 4.
 D. M. Davis and M. E. Mahowald. Classification of the stable homotopy types of stunted real projective spaces. Pacific J. Math., 125(2):335345, 1986. MR 88a:55006
 5.
 D. M. Davis and M. E. Mahowald. The image of the stable homomorphism. Topology, 28(1):3958, 1989. MR 90c:55013
 6.
 S. Feder, S. Gitler, and K. Y. Lam. Composition properties of projective homotopy classes. Pacific J. Math., 68(1):4761, 1977. MR 58:24263
 7.
 J. González. The regular complex in the Adams spectral sequence. Trans. Amer. Math. Soc. 350 (1998), 26292664. CMP 98:11
 8.
 J. González. A vanishing line in the Adams spectral sequence. To appear in Topology.
 9.
 J. González. Classification of the stable homotopy types of stunted lens spaces for an odd prime. Pacific J. Math., 176(2):325343, 1996. MR 97m:55011
 10.
 D. C. Johnson and W. S. Wilson. Projective dimension and BrownPeterson homology. Topology, 12:327353, 1973. MR 48:12576
 11.
 R. M. Kane. Operations in connective theory. Mem. Amer. Math. Soc., 34(254), 1981. MR 82m:55025
 12.
 W. Lellmann. Operations and cooperations in oddprimary connective theory. J. London Math. Soc. (2), 29(3):562576, 1984. MR 88a:55020
 13.
 W. Lellmann and M. E. Mahowald. The Adams spectral sequence. Trans. Amer. Math. Soc., 300(2):593623, 1987. MR 88c:55023
 14.
 R. Thompson. The periodic homotopy groups of an unstable sphere at odd primes. Trans. Amer. Math. Soc., 319(2):535559, 1990. MR 90j:55021
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
55P15,
55N20,
55P42,
55Q50,
55T15.
Retrieve articles in all journals
with MSC (1991):
55P15,
55N20,
55P42,
55Q50,
55T15.
Additional Information
Jesús González
Affiliation:
Departamento de Matemáticas, Cinvestav, AP 14740, México DF 07000
Email:
jesus@math.cinvestav.mx
DOI:
http://dx.doi.org/10.1090/S0002994799022849
PII:
S 00029947(99)022849
Received by editor(s):
November 18, 1994
Received by editor(s) in revised form:
August 1, 1997
Published electronically:
March 10, 1999
Article copyright:
© Copyright 1999
American Mathematical Society
