LOW-DIMENSIONAL LINEAR REPRESENTATIONS
OF $\text{Aut} F_n$, $n \geq 3$

A. POTAPCHIK AND A. RAPINCHUK

Abstract. We classify all complex representations of $\text{Aut} F_n$, the automorphism group of the free group F_n ($n \geq 3$), of dimension $\leq 2n - 2$. Among those representations is a new representation of dimension $n + 1$ which does not vanish on the group of inner automorphisms.

INTRODUCTION

In this paper we study low-dimensional linear representations of $\Gamma_n = \text{Aut} F_n$ ($n \geq 3$), the automorphism group of the free group (low-dimensional representations of $\text{Aut} F_2$ were analyzed in [DP]). It is known (see Theorem 1.2) that any n-dimensional representation of $\text{Aut} F_n$ factors through the canonical homomorphism $f: \Gamma_n \rightarrow GL_n(\mathbb{Z})$. We show that in dimension higher than n, the group Γ_n acquires new representations. Namely, we will establish the existence of a homomorphism $g: \Gamma_n \rightarrow GL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$ which “lifts” f and gives rise to an $(n+1)$-dimensional representation. The main result of the paper (Theorem 3.1) claims that this representation accounts in fact for all representations of Γ_n of dimension $\leq 2n - 2$ (in particular, any such representation factors through g). We also use the homomorphism g to construct an infinite family of pairwise inequivalent representations of Γ_n (Proposition 2.5).

We are grateful to the referee for helpful comments and especially for pointing out a number of relevant references we were not aware of.

1. Notations and preliminaries.

Throughout the paper, E_m will denote the identity $m \times m$-matrix; for a partition $m = m_1 + \cdots + m_k$, $G(m_1, \ldots, m_k)$ will denote the product

$$GL_{m_1}(\mathbb{C}) \times \cdots \times GL_{m_k}(\mathbb{C})$$

diagonally embedded in $GL_m(\mathbb{C})$, $p_i(m_1, \ldots, m_k): G(m_1, \ldots, m_k) \rightarrow GL_{m_i}(\mathbb{C})$ being the corresponding projection; S_n is the symmetric group on $\{1, \ldots, n\}$. To comply with the classical tradition, Γ_n and S_n will be treated as groups of right transformations (in other words, the result of application of f to a will be written as $(a)f$, with the law of composition given by $(a)(fg) = ((a)f)g$).
We will use the following elements of $\Gamma_n = \text{Aut} F_n$:

$$\rho_{ij}: \begin{cases} x_i & \rightarrow x_i x_j, \\ x_k & \rightarrow x_k, \quad k \neq i, \end{cases} \quad \lambda_{ij}: \begin{cases} x_i & \rightarrow x_j x_i, \\ x_k & \rightarrow x_k, \quad k \neq i, \end{cases}$$

$$\varepsilon_i: \begin{cases} x_i & \rightarrow x_i^{-1}, \\ x_k & \rightarrow x_k, \quad k \neq i, \end{cases} \quad \varepsilon_{ij} = \varepsilon_i \varepsilon_j; \quad \varepsilon = \varepsilon_1 \ldots \varepsilon_n : x_i \rightarrow x_i^{-1} \quad \forall i,$$

$$\forall \pi \in S_n, \quad \sigma_{\pi}: x_i \rightarrow x_{(i)\pi}.$$

It is known that these elements generate Γ_n (cf. [MKS]). One easily checks the following identities:

$$\varepsilon_i^2 = \text{id}_{F_n}, \quad \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i, \quad \sigma_{\pi}^{-1} \varepsilon_i \sigma_{\pi} = \varepsilon_{(i)\pi},$$

$$\varepsilon_i^{-1} \rho_{ij} \varepsilon_i = \lambda_{ij}^{-1}, \quad \varepsilon_{ij}^{-1} \rho_{ij} \varepsilon_{ij} = \varepsilon^{-1} \rho_{ij} \varepsilon = \lambda_{ij} \quad \forall i, j, \ i \neq j.$$

It follows that H_n, the subgroup generated by all ε_i, is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^n$; all $\sigma, \pi \in S_n$, form a subgroup Σ_n which is a replica of S_n; and the subgroup Ω_{π}, generated by all ε_i and σ_i together, is the semidirect product $\Sigma_n \rtimes H_n$.

A special feature that distinguishes the case $n \geq 3$ from the case $n = 2$ is the existence of the following commutator relations:

$$[\lambda_{ij}, \lambda_{jk}] = \lambda_{ik}, \quad [\rho_{ij}, \rho_{jk}] = \rho_{ik}$$

(i, j, and k are all distinct), where $[x, y] = x y x^{-1} y^{-1}$.

Passing to abelianization, we obtain a (surjective) homomorphism

$$f : \Gamma_n \rightarrow \text{Aut}(F_n/[F_n, F_n]) = \text{GL}_n(\mathbb{Z})$$

(matrix presentation is taken with respect to the basis of $F_n/[F_n, F_n] \cong \mathbb{Z}^n$ made up of the images of x_1, \ldots, x_n; for consistency, \mathbb{Z}^n is treated as n-rows of integers, with right action of $\text{GL}_n(\mathbb{Z})$). Let $N = \text{Ker} f$. Our argument makes essential use of the fact (see [LS], p.28) that N as a normal subgroup of Γ_n is generated by the element

$$\beta = \lambda_{n,n-1}^{-1} \rho_{n,n-1}.$$

Another element to be frequently used is

$$\gamma = \lambda_{n,n-1}^{-1} \rho_{n,n-1}.$$

Lemma 1.1. Let $\varphi : \Gamma_n \rightarrow G$ be a homomorphism of Γ_n to some group G. If the restriction of φ to Ω_n is not injective, then φ factors through f.

Proof. First, assume that the restriction $\varphi | H_n$ is not injective. It is easy to see that H_n has only two proper subgroups normalized by $\Sigma_n : \langle \varepsilon \rangle$ and $H' = \{ h \in H_n \mid \text{det} f(h) = 1 \}$. If $\text{Ker} f = \langle \varepsilon \rangle$, then (cf. (1))

$$\varphi(\lambda_{ij}) = \varphi(\varepsilon \rho_{ij} \varepsilon^{-1}) = \varphi(\rho_{ij}),$$

implying that $\varphi(\beta) = 1_G$, which in view of the fact quoted above implies that $\varphi(N) = \{ 1_G \}$; hence our claim. If $\text{Ker} (\varphi | H_n) \supset H'$, we observe that $\varepsilon_{ij} \in H'$ (i $\neq j$), so the same argument applies with ε replaced by ε_{ij}.

Now, suppose $z = (\sigma, h) \in \text{Ker}(\varphi | \Omega_n)$ with π nontrivial. If i is such that $\pi(i) \neq i$, then the commutator $[z, \varepsilon_i] = \varepsilon_{\pi(i)} \in \text{Ker}(\varphi | H_n)$, reducing the argument to the previous case.

Lemma 1.1 implies
Theorem 1.2 ([DF], [R1]). Every n-dimensional representation $\theta : \Gamma_n \rightarrow GL_n(\mathbf{C})$ factors through the canonical homomorphism $f : \Gamma_n \rightarrow GL_n(\mathbf{Z})$.

Proof. It follows from Lemma 1.1 that $\theta(H_n) \subset GL_n(\mathbf{C})$ is isomorphic to $(\mathbf{Z}/2\mathbf{Z})^n$, so after replacing θ by an equivalent representation we may assume that $\theta(\Sigma_n)$ contains representatives of all cosets of the Weyl group $W = N/D_n$. Since ε is fixed by Σ_n, and $-E_n$ is the only nontrivial element of $\theta(H_n)$ fixed by W, we conclude that $\theta(\varepsilon) = -E_n$. But then $\theta(\beta) = \theta([\rho_{nn-1},\varepsilon]) = E_n$, and our claim follows. \hfill \square

Remark 1.3. As pointed out by the referee, Theorem 1.2 was first proved in [DF]. Being unaware of this result, the second-named author rediscovered it in [R1] (with the same proof which we reproduced above for the sake of completeness) in an attempt to see whether Γ_n ($n \geq 3$) has finite representation type.

2. The homomorphism $g : \Gamma_n \rightarrow GL_n(\mathbf{Z}) \ltimes \mathbf{Z}^n$.

To avoid ambiguity, we note that since we are using the right action of $GL_n(\mathbf{Z})$ on \mathbf{Z}^n, the operation on the semidirect product $GL_n(\mathbf{Z}) \ltimes \mathbf{Z}^n$ is given by $(A,u)(B,v) = (AB,uB+v)$. Let v_1, \ldots, v_n be the standard basis of \mathbf{Z}^n.

Proposition 2.1. For every $n \geq 2$, there exists a homomorphism
\[
g : \Gamma_n \rightarrow GL_n(\mathbf{Z}) \ltimes \mathbf{Z}^n
\]
such that
\[
g(\lambda_{ij}) = (f(\lambda_{ij}), v_j), \quad g(\rho_{ij}) = (f(\rho_{ij}), -v_j),
\]
\[
g(\varepsilon_i) = (f(\varepsilon_i), 0), \quad g(\sigma_\pi) = (f(\sigma_\pi), 0).
\]

Proof. For $n \geq 4$, Γ_n is generated by the following four automorphisms:
\[
P = \sigma_{(12)}, \quad Q = \sigma_{(12)\ldots(n)}, \quad S = \varepsilon_1, \quad U = \lambda_{12},
\]
and admits the following presentation in terms of these generators (cf. [MKS], [N]):

1. $P^2 = S^2 = Q^n = (QP)^{n-1} = 1$,
2. $[S,Q^{-1}P] = [S,Q^2] = [S,Q^{-1}SQ] = [P,Q^{-1}PQ^2] = 1$,
3. $(U^{-1}PUPUSPS) = (PSPU)^2 = (PQ^{-1}UQ)^2UQ^{-1}U^{-1}QU^{-1} = 1$,
4. $[U,Q^{-2}P] = [U,QPQ^{-1}P] = [U,Q^{-2}Q] = [U,Q^{-2}UQ^2] = 1$,
5. $[U,SUS] = [U,PQ^{-1}SUSQP] = [U,PQ^{-1}PUPQP^{-1}PQ] = 1$.

Since the GL_n-components of $g(P), g(Q), g(S)$ and $g(U)$ as defined in the statement of the proposition coincide with $f(P), f(Q), f(S)$ and $f(U)$ respectively, for the existence of a homomorphism $g : \Gamma_n \rightarrow GL_n(\mathbf{Z}) \ltimes \mathbf{Z}^n$ with such images of $P, Q, S,$ and U, we need to verify only the equality of the \mathbf{Z}^n-components in the relations (1)--(4). For computations, we need to observe that $f(S) = \text{diag}(-1,1,\ldots,1)$, $f(U) = E_{12}$, the elementary matrix with 1 as the (12)-entry, and $f(\sigma_\pi) = (\delta_{i(i)}), \pi)$, the permutation matrix. Note that since the \mathbf{Z}^n-components of $g(P), g(Q)$ and $g(S)$ are trivial, we only need to verify the relations involving U, i.e. (3) and (4).
The triviality of the \mathbb{Z}^n-component in all relations (3) is easily verified by direct computation. Namely, the \mathbb{Z}^n-component of $U^{-1}PUPUSPSPS$ is

$$(-v_2)f(PUPUSPSPS) + (v_2)f(PSUSPSP) + (v_2)f(SPS)$$

$$= -v_2 + (v_1 + v_2) - v_1 = 0.$$

The \mathbb{Z}^n-component of $(PSPU)^2$ is

$$(v_2)f(PSPU) + v_2 = -v_2 + v_2 = 0.$$

Finally, the \mathbb{Z}^n-component of $(PQ^{-1}UQ)^2UQ^{-1}UQ^{-1}$ is

$$(2v_2)f(UQ^{-1}U^{-1}QU^{-1}) + (v_2)f(Q^{-1}U^{-1}QU^{-1}) - (v_2)f(QU^{-1}) - v_2$$

$$= 2v_3 + (v_2 - v_3) - v_3 - v_2 = 0.$$

For verification of (4), we note the following commutator identity:

$$[([A, u], (B, v)] = ([A, B], u(B - E_n)A^{-1}B^{-1} + v(A^{-1} - E_n)B^{-1}).$$

It follows that the \mathbb{Z}^n-component of $[(A, u), (B, v)]$ is trivial if $uB = u$ and $vA = v$. In the first three commutators, the \mathbb{Z}^n-component of the second element is trivial, and it suffices to show that this element fixes v_2 ($= \mathbb{Z}^n$-component of $g(U)$). This is easily done by direct computation; for example,

$$(v_2)Q^{-2}PQ^2 = (v_n)PQ^2 = (v_n)Q^2 = v_2,$$

etc.

For triviality of the \mathbb{Z}^n-component in the remaining four commutators, we need to show in addition that the \mathbb{Z}^n-component of this element is fixed by U, i.e. it doesn’t involve v_1. The computations are routine, and we consider below only two out of four cases:

$$(v_2)f(Q^{-2}UQ^2) = (v_n)f(UQ^{-1}) = (v_n)f(Q^2) = v_2,$$

and the \mathbb{Z}^n-component of $Q^{-2}UQ^2$ is $v_2f(Q^2) = v_2$;

$$(v_2)f(SUS) = (v_2)f(US) = (v_2)f(S) = v_2,$$

and the \mathbb{Z}^n-component of SUS is $v_2f(Q^2) = v_4$ (in the remaining two commutators the \mathbb{Z}^n-components of the second element are v_3 and v_4, respectively).

Once we have established the existence of a homomorphism $g: \Gamma_n \to GL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$ which has the required images on $P, Q, S,$ and U, the standard relations in Γ_n show that the images under this g of all elements $\varepsilon_i, \lambda_{ij}, \rho_{ij},$ and σ_π coincide with those given in the statement of the proposition. Indeed, since the permutations (12) and $(12\ldots n)$ generate S_n, we have $g(\sigma_\pi) = (f(\sigma_\pi), 0)$ for all $\pi \in S_n$. The identity $\varepsilon_1\lambda_{12}\varepsilon_1^{-1} = \rho_{12}^{-1}$ implies that $g(\rho_{12}) = (f(\rho_{12}), -v_2)$, and then the identities

$$\sigma_\pi^{-1}\varepsilon_1\sigma_\pi = \varepsilon(1)\pi,$$

$$\sigma_\pi^{-1}\lambda_{12}\sigma_\pi = \lambda(1)\pi(2)\pi,$$

$$\sigma_\pi^{-1}\rho_{12}\sigma_\pi = \rho(1)\pi(2)\pi$$

easily complete the verification that g indeed has the prescribed images on all elements.

For the remaining two dimensions $n = 2$ and 3, one can argue similarly, using the known presentations of Γ_2 and Γ_3 (see [MKS]). However, there is a shorter argument based on the “functionality” of $g = g_n$ with respect to n, by which we mean the
Thus, \(\Gamma \) has inequivalent representations \(\rho \) of \(\text{GL}_n \) upper corner of \(\text{Hom} \) \(\text{Im} \) \(\theta \) of \(g \). Since \(g \) doesn’t vanish on \(\text{Int} \), the statement of the proposition for \(\Gamma \) is the third term of the lower central series \(\text{Hom}_{\mathbb{Z}}(F_n/[F_n, F_n], F_n/F_n^{(3)}) \), where \(F_n^{(3)} \) is the third term of the lower central series of \(F_n \) (see [F], pp. 426-428).

Corollary 2.3. For the group of inner automorphisms \(\text{Int} F_n \subset \Gamma_n \), one has

\[
g(\text{Int} F_n) = (E_n, 2(n - 1)\mathbb{Z}^n).
\]

In particular, \(g \) doesn’t vanish on \(\text{Int} F_n \).

Proof. Since

\[
\text{Int} x_j = \prod_{i \neq j} \lambda_{ij}^{-1}, \prod_{i \neq j} \rho_{ij}^{-1},
\]

(5) follows. \(\square \)

Note that the homomorphism \(g \) is not surjective. This plays a crucial role in the proof of the following fact.

Corollary 2.4. The extension

\[
1 \rightarrow N^{ab} \rightarrow \Gamma_n/[N, N] \rightarrow \text{GL}_n(\mathbb{Z}) \rightarrow 1,
\]

and consequently also the extension

\[
1 \rightarrow N \rightarrow \Gamma_n \rightarrow \text{GL}_n(\mathbb{Z}) \rightarrow 1,
\]

do not split.

Proof. If (6) were split, so would be the extension

\[
1 \rightarrow g(N) \rightarrow g(\Gamma_n) \rightarrow \text{GL}_n(\mathbb{Z}) \rightarrow 1;
\]
in particular, \(g(\Gamma_n) \subset \text{GL}_n(\mathbb{Z}) \times g(N) \). But \(g(\beta) = (2v_n, E_n) \), so \(g(N) = 2\mathbb{Z}^n \), and we see that \(g(\lambda_{n-1}) \notin \text{GL}_n(\mathbb{Z}) \times g(N) \). \(\square \)

As yet another application of the existence of the homomorphism \(g \), we will show that (contrary to some expectations) \(\Gamma_n \) does not have finite representation type.

Proposition 2.5. For any \(n \geq 2 \), there exists an infinite family \(\{\rho_n\} \) of pairwise inequivalent representations \(\rho_n : \Gamma_n \rightarrow \text{GL}_m(\mathbb{C}) \) in some dimension \(m = m(n) \). Thus, \(\Gamma_n \) has infinite representation type for all \(n \geq 2 \).
Proof. Since Γ_2 has the virtually free group $GL_2(\mathbb{Z})$ as a quotient, our assertion is trivial for $n = 2$. So, in what follows $n \geq 3$.

We will say that two representations $\rho_1, \rho_2 : H \to GL_m(\mathbb{C})$ of a certain group H are strongly inequivalent if $\text{Hom}_H((\mathbb{C}^m, \rho_1), (\mathbb{C}^m, \rho_2)) = 0$; in other words, there is no nonzero operator $T : \mathbb{C}^m \to \mathbb{C}^m$ such that $\rho_1(h)T = T\rho_2(h)$ for all $h \in H$.

Our construction of the required family $\{\rho_s\}$ (which generalizes the construction described in [R2]) hinges on the existence of an infinite family of pairwise strongly inequivalent representation of the algebraic group $G_n = SL_n(\mathbb{C}) \ltimes \mathbb{C}^n$. Though this should be well-known to the specialists in representation theory, we have been unable to find a reference, and therefore include the formulation and proof of the required fact.

Lemma 2.6. For any $n \geq 3$, there exists an $m = m(n)$ such that G_n admits an infinite family of pairwise strongly inequivalent representations $\theta_s : G_n \to GL_m(\mathbb{C})$.

Proof. We will need six pairwise inequivalent irreducible rational representations $\rho_1, ..., \rho_6$ of the algebraic group $SL_n(\mathbb{C})$ with the following property: for every pair (i, j) from the set

$$I = \{(1, 4), (2, 4), (2, 5), (3, 5), (3, 6), (1, 6)\},$$

the tensor product $\hat{\rho}_i \otimes \hat{\rho}_j$ contains the standard representation of $SL_n(\mathbb{C})$ on $V = \mathbb{C}^n$, where for a representation ρ, $\hat{\rho}$ denotes the contragredient representation defined by $\hat{\rho}(g) = \rho(g^{-1})$. Such representations (which exist for any $n \geq 3$) were kindly constructed for us by E. B. Vinberg, to whom we acknowledge our thanks. Namely, it follows from the formula for the multiplicities of irreducible components of the tensor products of two irreducible representations (cf. [OV], pp. 290, and Exercise 14 to §9 of Ch. VIII in [Bo]) that the representations with the following highest weights possess the required property:

- $\rho_1 : 3\varepsilon_1 + \varepsilon_2 + \varepsilon_3$,
- $\rho_2 : 2\varepsilon_1 + 2\varepsilon_2 + \varepsilon_3$,
- $\rho_3 : 3\varepsilon_1 + 2\varepsilon_2$,
- $\rho_4 : 2\varepsilon_1 + \varepsilon_2 + \varepsilon_3$,
- $\rho_5 : 2\varepsilon_1 + 2\varepsilon_3$,
- $\rho_6 : 3\varepsilon_1 + \varepsilon_2$.

Let $n_i = \dim \rho_i$ ($i = 1, ..., 6$), and let M_{ij} be the space of complex $n_i \times n_j$-matrices with the following action of $SL_n(\mathbb{C})$:

$$A \cdot g = \rho_i(g)^{-1} A \rho_j(g), \quad g \in SL_n(\mathbb{C}),$$

where in the right-hand side we have the usual product of matrices. Obviously, this representation of $SL_n(\mathbb{C})$ is equivalent to $\hat{\rho}_i \otimes \hat{\rho}_j$. Let $m = n_1 + ... + n_6$. This partition of m makes it sensible to talk about the ij-block (of size $n_i \times n_j$) of a matrix from $M_m(\mathbb{C})$, where $i, j = 1, ..., 6$. Let $V_{ij} \subset M_m(\mathbb{C})$ be the subspace of matrices in which all blocks, except ij, equal zero. Then V_{ij} is invariant under $Ad\rho$, where $\rho = \rho_1 \oplus ... \oplus \rho_6$, and the restriction $Ad\rho|_{V_{ij}}$ defines an $SL_n(\mathbb{C})$-module isomorphic to M_{ij}, hence to $\hat{\rho}_i \otimes \hat{\rho}_j$. Thus, according to our choice of ρ_i, for each pair $(i, j) \in I$ there exists an embedding of $SL_n(\mathbb{C})$-modules $\varphi_{ij} : V \to V_{ij}$. (As remarked by E. B. Vinberg, since V does not have multiple weights, it follows from the above mentioned formula for multiplicities that φ_{ij} is actually unique up to a scalar.)

Let $W_{ij} = \varphi_{ij}(V)$. For any two pairs $(i_1, j_1), (i_2, j_2) \in I$ we have $j_1 \neq i_2$ and therefore $W_{i_1, j_1} \cdot W_{i_2, j_2} = 0$ (the product is taken in $M_m(\mathbb{C})$). Since $W_{i_2} = 0$ for all $i \neq j$, we see that $W = \bigoplus_{(i, j) \in I} W_{ij}$ satisfies $W^2 = 0$.

Consider the family of linear maps $\varphi_s : V \to W$, $s \in \mathbb{C}$, defined by

$$\varphi_s(v) = s\varphi_{14}(v) + \sum_{(i,j) \in I \setminus (1,4)} \varphi_{ij}(v).$$

(7)

One easily checks that $\theta_s : G_n \to GL_m(\mathbb{C})$, given by

$$\theta_s(g, v) = \rho(g)(E_m + \varphi_s(v)),$$

is a family of rational representations of G_n, so it only remains to show that θ_s and θ_t are strongly inequivalent for $s, t \in \mathbb{C}$, $s \neq t$.

Suppose $T : \mathbb{C}^n \to \mathbb{C}^m$ intertwines ρ_s and ρ_t. Then T must commute with ρ, and therefore $T = \text{diag}(\alpha_1 E_{a_1}, ..., \alpha_6 E_{a_6})$ for some $\alpha_1, ..., \alpha_6 \in \mathbb{C}$, as ρ is the direct sum of the pairwise inequivalent irreducible representations $\rho_1, ..., \rho_6$. In view of (7) the condition $T\varphi_s = \varphi_s T$ implies that $\alpha_i = \alpha_j$ for all i, j such that $(i, j) \in I$ and $(i, j) \neq (1, 4)$, and therefore $\alpha_1 = ... = \alpha_6$. So, if $T \neq 0$, then $T\varphi_s = \varphi_s T$ forces $s = t$, completing the proof.

We now proceed with the proof of the proposition. Clearly, it suffices to construct an infinite family of pairwise inequivalent representations of $\Lambda_n = g(\Gamma_n)$. Note that $\Phi_n = \Lambda_n \cap (SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n)$ is a normal subgroup of Λ_n of index 2; on the other hand, being of finite index in $SL_n(\mathbb{Z}) \ltimes \mathbb{Z}^n$, it is Zariski dense in G_n. It follows that on restricting θ_s to Φ_n (θ_s, as in Lemma 2.6) we obtain a family of pairwise strongly inequivalent representations π_s of Φ_n. Fix $g \in \Lambda_n - \Phi_n$ and let $\tilde{\pi}_s(g) = \pi_s(ghg^{-1})$.

We show that the family

$$\rho_s = \text{Ind}_{\Phi_n}^{\Lambda_n}(\pi_s)$$

contains infinitely many inequivalent representations. Since representations $\tilde{\pi}_s$ are pairwise inequivalent, it suffices to establish the implication

$$\rho_s \simeq \rho_t \text{ for } s \neq t \Rightarrow \pi_s \simeq \tilde{\pi}_t,$$

(8)

where \simeq denotes the equivalence of representations.

Obviously, the restriction $\rho_s|_{\Phi_n}$ is equivalent to $\pi_s \oplus \tilde{\pi}_s$, so $\rho_s \simeq \rho_t$ implies the existence of an isomorphism

$$T : \pi_s \oplus \tilde{\pi}_s \to \pi_t \oplus \tilde{\pi}_t.$$

However, since π_s and π_t are strongly inequivalent, the projection of $T \circ \pi_s$ to π_t must be trivial, implying that T yields the equivalence of π_s and π_t, which proves (8) and completes the proof of Proposition 2.5.

Remark 2.7. Note that for the family ρ_s constructed in Proposition 2.5, $\rho_s(N)$ is abelian, so Theorem 2 in [R1], which claims that Γ_n ($n \geq 3$) is SS-rigid with respect to the class of representations ρ for which $\rho(N)$ is nilpotent of a fixed nilpotency class, cannot be upgraded to a statement about finiteness of representation type. On the other hand, representations ρ_s are not completely reducible, so the question of whether or not Γ_n is SS-rigid, i.e. has only finitely many inequivalent completely reducible representations in every dimension, remains open.
3. Statement of the Main Theorem.

We need to introduce some special representations of Γ_m. Let $\mu: \Gamma_n \to GL_n(C)$ be the representation obtained by composing $f: \Gamma_n \to GL_n(Z)$ with the embedding $GL_n(Z) \subset GL_n(C)$. Let $\delta(x) = \det \mu(x)$; since for $n \geq 3$ the commutator subgroup $[\Gamma_n, \Gamma_n]$ coincides with $f^{-1}(SL_n(Z))$ (this easily follows from the commutator relations), δ is the only nontrivial character of Γ_n.

Next, the homomorphism $g: \Gamma_n \to GL_n(Z) \ltimes Z^n$, $g(x) = (f(x), \nu(x))$, constructed in the previous section, gives rise to the following representation of Γ_n in $GL_{n+1}(Z)$:

$$x \mapsto \begin{pmatrix} f(x) & 0 \\ \nu(x) & 1 \end{pmatrix},$$

and we let $\nu: \Gamma_n \to GL_{n+1}(C)$ denote the composition of this representation with the embedding $GL_{n+1}(Z) \subset GL_{n+1}(C)$. (Obviously, $\ker \nu = \ker g$; in particular, ν doesn’t vanish on $\Int F_n$.)

Theorem 3.1. Let $n \geq 3$, and let $\theta: \Gamma_n \to GL_m(C)$ be a representation of dimension $m \leq 2n - 2$. Then either θ factors through f, or it is equivalent to a direct sum $\theta_1 \oplus \theta_2$, where θ_1 is one of the following $(n+1)$-dimensional representations: $\nu, \delta \nu$, or their contragredient representations, and θ_2 is a direct sum of 1-dimensional representations of Γ_n. In particular, θ always factors through g and therefore vanishes on $[N, N]$.

Here $\delta \nu$ denotes the δ-twist of ν given by $\delta \nu(x) = \delta(x) \nu(x)$, and the contragredient representation for $\varphi: \Gamma_n \to GL_d(C)$ is $\tau \varphi$, where $\tau: g \mapsto g^{-1}$.

Corollary 3.2. Let $n \geq 3$. Then Γ_n has only finitely many inequivalent representations in any dimension $\leq 2n - 2$.

Indeed, it follows, for example, from the affirmative solution of the congruence subgroup problem for $SL_n(Z)$ (see [BMS]), or from Margulis’s superrigidity (see [Ma]), that $GL_n(Z)$ has finitely many inequivalent representations in every dimension.

Remark 3.3. There is a general construction of representations of Γ_n (see [BL]): one looks at the natural action of Γ_n on the representation variety $R_m(F_n)$ for some m, which gives rise to an action of Γ_n on the ring of regular functions $A = C[R_m(F_n)]$; now, if $m \subset A$ is the maximal ideal associated with the trivial representation, one gets a family of finite-dimensional representations of Γ_n on the quotients m^i/m^j ($i < j$). It would be interesting to find out if ν occurs as a subrepresentation in some such representation.

4. Restricting low-dimensional representations of Γ_n to Ω_n.

Let \hat{H}_n be the group of characters of H_n, \hat{e}_i and let be defined by $\hat{e}_i(\zeta_j) = \delta_{ij}$ (Kronecker’s delta). We will need some specific representations of Ω_n. Let $\psi: \Sigma_n \to \{\pm 1\}$ be the sign homomorphism, and $\chi_0 = \hat{e}_1 + \ldots + \hat{e}_n$. Then for $k, l \in \{0, 1\}$ we define a character of Ω_n,

$$\eta_{k,l}(\sigma, \hat{h}) = \psi(\sigma)^k \chi_0(\hat{h})^l$$
and the corresponding twisted n-dimensional representation
\[\mu_{k,l} = \eta_{k,l} \cdot \mu \big|_{\Omega_n}, \]
where $\mu: \Gamma_n \to GL_n(C)$ is the standard representation introduced in the previous section.

Proposition 4.1. Let $\theta: \Gamma_n \to GL_m(C)$ ($n \geq 3$) be a representation of dimension $m \leq 2n-2$. Then $\theta(N) \neq \{E_m\}$ is possible only if the restriction $\theta \mid \Omega_n$ is equivalent to a representation of the form:
\[\mu_{0,0} \oplus \bigg(\bigoplus_{k,l \in \{0,1\}} (\eta_{k,l})^{\alpha_{k,l}} \bigg) \]
for some $p,q \in \{0,1\}$, and some integers $\alpha_{k,l}$ ($k,l \in \{0,1\}$) such that $\alpha_{00} + \cdots + \alpha_{11} = m - n$.

Proof. Let $V = C^n$, and let
\[(1) \quad V = V_{\chi_1} \oplus \cdots \oplus V_{\chi_r} \]
be the decomposition of V as the direct sum of nonzero eigenspaces of H_n corresponding to characters $\chi_i \in H_n$ (observe that $\{\chi_1, \ldots, \chi_r\}$ is the union of some orbits of Σ_n acting on H_n). If $\chi \in H_n$ is of the form
\[\chi = \hat{\varepsilon}_i \]
then the orbit $\Sigma_n \cdot \chi$ consists of $\binom{n}{1}$ elements. It follows that if $n \geq 5$, $|\Sigma_n \cdot \chi| \geq 2n$ unless $l = 0$, $n - 1$, or n, i.e., $\chi = 0$, $\hat{\varepsilon}_i$, $\chi^0 - \hat{\varepsilon}_i$, or χ^0 for some i, and therefore only such characters can appear in (1), as $\dim V < 2n$. On the other hand, if $n = 3$, then the characters of such form exhaust all characters, so only the case $n = 4$ will require special consideration. Furthermore, in view of Lemma 1.1, there should be a χ_i in (1) which is different from 0 and χ^0. Then the orbit $O = \Sigma_n \cdot \chi_i$ consists of n elements, so $W = \bigoplus_{\chi \in O} V_{\chi}$ has dimension $n \cdot \dim V_{\chi}$, so $\dim V_{\chi_i} = 1$. The stabilizer $\Sigma_n(\chi_i)$ is isomorphic to S_{n-1}, so its representation on V_{χ_i} is either the trivial or the sign representation, which easily implies that the representation of Ω_n on W is equivalent to one of the $\mu_{p,q}$. Those V_{χ_i} in (1) which are not in W correspond to $\chi = 0$ or χ^0; hence they are Σ_n-invariant, and have dimension $\leq n - 2$. But for $n \neq 4$, S_n has only one nontrivial irreducible representation of dimension $\leq n - 2$, viz. the 1-dimensional sign representation (see [JK], Theorem 2.4.10), and our assertion follows.

For $n = 4$, there is one orbit of Σ_4 on H_4 consisting of 6 elements, viz. $O = \Sigma_4 \cdot \chi$, $\chi = \hat{\varepsilon}_1 + \hat{\varepsilon}_2$, so we need to eliminate the possibility of this χ in (1) when $\dim V = 6$. In this case $O = \{\hat{\varepsilon}_i + \hat{\varepsilon}_j \mid i \neq j\}$, which restricts to three distinct characters of the subgroup $H = \langle \varepsilon_1, \varepsilon_2 \rangle$, each of the corresponding eigenspaces being 2-dimensional. Let Γ be the group $Aut F(x_3, x_4)$ isomorphically embedded in Γ_4 as acting identically on x_1 and x_2. Then \hat{H} and $\hat{\Gamma}$ commute, so each of the eigenspaces is $\hat{\Gamma}$-invariant. Since any 2-dimensional representation of $Aut F_2$ factors through the canonical homomorphism $Aut F_2 \to GL_2(Z)$ (Theorem 1.2), this implies that $\theta(\beta) = E_m$, and hence $\theta(N) = \{E_m\}$—a contradiction.

It remains to be shown that if V_{χ} from (1) doesn’t occur in W (so $\chi = 0$ or χ^0, and V_{χ} is Σ_4-invariant), then the representation of Σ_4 on V_{χ} cannot be a 2-dimensional irreducible representation of Σ_4. It is known (see [FuH], p.19) that
S_4 has only one 2-dimensional irreducible representation \(\tau \) which is obtained by composing the standard representation of \(S_3 \) with the isomorphism
\[
S_4/\{1,(12)(34),(13)(24),(14)(23)\} \cong S_3.
\]
We need only the fact that \(\det \tau(t) = -1 \) for any transvection \(t \in S_4 \). So, let us suppose that
\[
\theta \mid \Omega_n \cong \mu_{p,q} \oplus \eta,
\]
where \(\eta(\sigma, h) = \chi_0(h)^t \tau(\pi), \ l \in \{0,1\} \). Let \(x = (\sigma_{(12)}, \varepsilon_1) \). Then
\[
\det \theta(x) = \det f(x) \det \tau((1,2)) = -1.
\]
On the other hand, since \([\Gamma_n, \Gamma_n] = f^{-1}(SL_n(\mathbb{Z})) \) for \(n \geq 3 \), we have \(x \in [\Gamma_n, \Gamma_n] \), and consequently \(\det \theta(x) = 1 \)—a contradiction. \(\square \)

5. Proof of Theorem 3.1.

Our proof of Theorem 3.1 is based on the description of the restriction of a representation \(\theta: \Gamma_n \to GL_m(\mathbb{C}) \) to \(\Omega_n \), provided by Proposition 4.1, and information about how elements of \(\Omega_n \) interact with \(\rho_{ij} \) and \(\lambda_{ij} \). We may (and we will) assume that
\[
\theta \mid \Omega_n = \mu_{p,q} \oplus \bar{\theta},
\]
where \(\bar{\theta} = \bigoplus_{k,l \in \{0,1\}} (\eta_{k,l})^{\alpha_{k,l}} \) (notation as in §4) has dimension \(l = m - n, 0 \leq l \leq n - 2 \). We collect in the following statement some properties of \(\mu_{p,q} \) and \(\bar{\theta} \) that are immediate consequences of their description and will be used below.

Lemma 5.1. (i) \(\mu_{p,q}(\varepsilon_{ij}) = \text{diag}(\alpha_1, \ldots, \alpha_n) \), where \(\alpha_i = \alpha_j = -1 \) and \(\alpha_k = 1 \) for \(k \neq i, j \).

(ii) \(\bar{\theta}(\varepsilon_i) = \bar{\theta}(\varepsilon_j) \) for all \(i, j \), so \(\bar{\theta}(\varepsilon_{ij}) = E_i \) for all \(i \neq j \).

(iii) Let \(g \in \Gamma_n \) be such that \(\theta(g) = \text{diag}(A, B) \in G(n, l) \), and suppose that either \(n = 3 \), or \(g \) commutes with \(\varepsilon_i \) and \(\sigma_{(jk)} \) for some \(i \) and some \(j \neq k \). Then \(B \) commutes with \(\bar{\theta}(\Omega_n) \).

Assertion (iii) is immediate if \(n = 3 \), since then \(\bar{\theta} \) is at most one-dimensional; otherwise one needs to use (ii) and the fact that for any two transposition, the corresponding automorphisms have the same image under \(\bar{\theta} \).

Let \(\Gamma' \) be the subgroup of \(\Gamma_n \) generated by \(\rho_{ij}, \lambda_{ij}, \varepsilon_i \) for \(i, j \in \{n-1, n\}, i \neq j \), and \(\sigma_{(n-1n)}, \Delta = (\Gamma', H_n) \).

Lemma 5.2. If either \(n \geq 4 \), or \(n = 3 \) but \(\theta \) doesn’t factor through \(f \), then \(\theta(\Delta) \subset D_{n-2} \times GL_{l+2}(\mathbb{C}) \), where \(D_{n-2} \subset GL_{n-2}(\mathbb{C}) \) is the diagonal torus.

Proof. Let \(H_{n-2} \subset H_n \) be the subgroup generated by \(\varepsilon_i \) for \(i \leq n - 2 \). Then \(\Delta \) commutes elementwise with \(H_{n-2} \), implying that \(\theta(\Delta) \) is contained in the centralizer \(C = C_{GL_{n}(\mathbb{C})}(\theta(H_{n-2})) \). First, we assume that \(n \geq 4 \). Since \(\theta(\varepsilon_i) = \text{diag}(\alpha_1, \ldots, \alpha_m) \) with \(\alpha_i = \alpha_j = -1 \) and all other \(\alpha \)'s equal to 1, we see that \(C \subset G(n-2, l+2) \). Furthermore, since for \(i \leq n - 2 \) we have \(p_1(n-2, l+2)(\theta(\varepsilon_i)) = \pm \text{diag}(\beta_1, \ldots, \beta_{n-2}) \), where \(\beta_i = -1 \) and all other \(\beta \)'s are 1, we get our claim.

If \(n = 3 \), we only need to consider the case \(m = 4 \). We have \(\theta(\varepsilon_i) = \pm \text{diag}(-1, 1, 1, 1) \), where \(\alpha \) can be 1 or -1. If \(\alpha = 1 \), our claim is immediate. Otherwise, the subspaces \(V_1, V_2 \subset \mathbb{C}^4 \) spanned by the \(1^{st} \) and \(4^{th} \), and the \(2^{nd} \) and
3rd basic vectors, respectively, are invariant under \(\theta(\Delta)\). Since \(\Gamma' \simeq \text{Aut} F_2\), we conclude from Theorem 1.2 that the restriction of \(\theta(\Gamma')\) to each of them factors through the canonical homomorphism \(f': \Gamma' \to GL_2(Z)\). This implies that \(\theta(\beta) = E_4\), and therefore \(\theta\) factors through \(f\).

So, in terms of proving Theorem 3, we may (and will) assume henceforth the inclusion given in Lemma 5.2. Since \(\beta = [\varepsilon_{n,n-1}, \lambda_{n,n-1}]\) and \(\gamma = [\lambda_{n,n-1}, \varepsilon_n]\), we obtain
\[
p_1(n-2, l+2)(\theta(\beta)) = p_1(n-2, l+2)(\theta(\gamma)) = E_{n-2}.
\]
We let \(\theta'\) denote the representation of \(\Delta\) obtained by composing \(\theta\) with the projection \(p_2(n-2, l+2)\). Then
\[
\theta'(\varepsilon_{1,n}) = \text{diag}(1, -1, E_l) \quad \text{and} \quad \theta'(\varepsilon_{n,n-1}) = \text{diag}(-1, -1, E_l),
\]
so the fact that \(\gamma\) and \(\varepsilon_{n,n-1}\) commute (which immediately follows from (1) in §1) implies that
\[
\theta'(\gamma) = \text{diag}(A, B)
\]
with \(A \in GL_2(C)\), and \(B \in GL_4(C)\). Moreover, using the identity
\[
(\gamma \varepsilon_{1,n})^2 = 1
\]
(which is again an immediate consequence of (1) in §1), we conclude that
\[
(\text{diag}(1, -1)A)^2 = E_2 \quad \text{and} \quad B^2 = E_m.
\]
If
\[
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},
\]
then we obtain from (1) that
\[
a^2 - bc = d^2 - bd = 1 \quad \text{and} \quad (a - d)b = (a - d)c = 0.
\]

Case 1. \(b \neq 0\) and \(c \neq 0\). We claim that in this case \(A\) cannot possibly have eigenvalues \(\pm 1\). Indeed, we obtain from (2) that \(a = d\) and \(\det A = 1\). This means that if one of the eigenvalues is \(\pm 1\), the other is the same. So, \(\text{tr} A = 2a = \pm 2\), which implies that \(bc = 0\)—a contradiction. Since the eigenvalues of \(B\) are \(\pm 1\), the fact that \(\gamma\) and \(\lambda_{n,n-1}\) commute implies that \(\theta'(\lambda_{n,n-1}) \in G(2, l) \subset GL_2(l)(C)\). Hence
\[
\theta'(\beta) = \theta'([\varepsilon_{n,n-1}, \lambda_{n,n-1}]) = E_{l+2}.
\]
So, \(\theta(\beta) = E_m\), and \(\theta\) factors through \(f\).

Case 2. \(b = c = 0\), i.e. \(A\) is diagonal. We will show that in this case \(\theta\) factors through \(f\) as well. We claim that in addition to the obvious identity \(\theta'(\gamma)^2 = E_{l+2}\), we also have
\[
\theta'(\varepsilon_n \sigma_{(n,n-1)} \gamma)^4 = E_{l+2}.
\]
Indeed, the matrices \(\theta'(\gamma), \theta'(\sigma_{(n,n-1)})\) and \(\theta'(\varepsilon_n)\) belong to \(G(2, l)\). Then (3) for their \(2 \times 2\)-blocks follows from the fact that these have the following shape:
\[
\text{diag}(\pm 1, \pm 1), \quad \pm \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \text{diag}(\pm 1, \pm 1).
\]
To analyze their \(l \times l\) blocks, we observe that since \(\gamma\) commutes with \(\sigma_{(12)}\) and \(\varepsilon_1\) if \(n \geq 4\), it follows from Lemma 5.1 that the \(m \times m\) block of \(\gamma\) commutes with those of \(\sigma_{(n,n-1)}\) and \(\varepsilon_n\), and again (3) follows.
Now, the identity
\[(\sigma_{nn-1})^{-1} \lambda_{nn-1}^{-1} (\sigma_{nn-1}) \lambda_{nn-1} = \varepsilon_n \sigma_{nn-1} \gamma \]
implies that \(\theta'(\lambda_{nn-1})^4 = E_{l+2} \), so
\[\theta'((\beta))^2 = \theta'(\lambda_{nn-1})^{-4} \theta'(\gamma)^2 = E_{l+2}. \]
Thus, \(\theta'(\varepsilon_{nn-1})^{-1} \varepsilon_{nn-1}^{\beta} = \theta'((\beta))^{-1} = \theta'((\beta)) \), and since \(\theta'(\varepsilon_{nn-1}) = \text{diag}(-E_2, E_l) \), we obtain
\[\theta'((\beta)) = \text{diag}(B_1, B_2) \in G(2, l). \]
Moreover, since \(\beta \) commutes with \(\varepsilon_n \), and \(\varepsilon_n \) has \(\pm \text{diag}(1, -1) \) as its \(2 \times 2 \) block, we see that \(B_1 \) is a diagonal matrix.

Next, we need the following easily verifiable identity:
\[\lambda_{nn-1}^{-1} \beta \lambda_{nn-1} = (\sigma_{nn-1})^{-1} \beta. \]
Since \(\theta'((\beta)) \) and \(\theta'(\sigma_{nn-1}) \) belong to \(G(2, l) \), and the same argument as above shows that their \(m \times m \) blocks commute, (4) implies that \(\beta = \text{diag}(B_1, B_2) \) is conjugate to
\[\text{diag} \left(\left(\pm B_1 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)^2, B_2^2 \right). \]
The eigenvalues of \(\beta \) are \(\pm 1 \), and it follows from the conjugacy of these matrices that the multiplicity of \(-1 \) is \(\leq 2 \). Since \(\det \theta((\beta)) = 1 \) (\(\beta \) is a commutator), it can only be 0 or 2. If it is 0 or \(B_1 = \pm E_2 \), we obtain \(\theta((\beta)) = E_m \). So, it remains to eliminate the possibility of \(-1 \) occurring as an eigenvalue in each of \(B_1 \) and \(B_2 \) with multiplicity one.

Assume that this is the case. Then the matrix \(B_1 \) can be either \(\text{diag}(1, -1) \) or \(\text{diag}(-1, 1) \), however by switching \(x_{n-1} \) and \(x_n \) (or alternatively by passing to the element \(\beta' = \sigma_{nn-1}^{-1} \beta \sigma_{nn-1} \) which equally generates \(N \), we may assume that \(B_1 = \text{diag}(1, -1) \). Furthermore, it follows from Lemma 5.1 that \(B_2 \) commutes with \(\theta((\Omega_n)) \), and therefore there exists a matrix \(C \in GL_l(C) \) that conjugates \(B_2 \) to \(\text{diag}(-1, 1, \ldots, 1) \) and preserves the shape of \(\theta \) (i.e. \(C^{-1} \theta C \) remains the direct sum of 1-dimensional representations of \(\Omega_n \)). So, by passing to an equivalent representation whose restriction to \(\Omega_n \) has the same structure, we may assume that \(\theta((\beta)) = \text{diag}(E_{n-1}, -E_2, E_l, E_l, E_l, E_1). \)

Then, since \(\lambda_{nn-1} \) commutes with \(\beta, \theta'(\lambda_{nn-1}) \) must be of the form
\[\begin{pmatrix} s & 0 & 0 & u \\ 0 & x & y & 0 \\ 0 & z & t & 0 \\ v & 0 & 0 & W \end{pmatrix} \]
where \(s \in C^*, u \in C^{1 \times (l-1)}, v \in C^{(l-1) \times 1}, \) and \(W \in M_{l-1}(C) \). Now, using the identity
\[\varepsilon_{nn-1}^{-1} \lambda_{nn-1} \varepsilon_{nn-1} = \lambda_{nn-1} \beta \]
and the fact that \(\theta'(\varepsilon_{nn-1}) = \text{diag}(-E_2, E_m) \), one easily obtains that \(u = 0 \) and \(v = 0 \). In particular, \(\theta(\lambda_{nn-1}) \in G(n + 1, l - 1) \). Since also \(\theta((\Omega_n)) \subset G(n + 1, l - 1) \), and \(\Omega_n \) and \(\lambda_{nn-1} \) together generate \(\Gamma_n \), we see that \(\theta((\Gamma_n)) \subset G(n + 1, l - 1) \). Let \(\theta': \Gamma_n \rightarrow GL_{n+1} \) be the composition of \(\theta \) with the projection to \(p_1(n + 1, l - 1) \).
Obviously, \(\theta(\lambda_{n-1}) \in G(n-2,3,l-1) \), and letting \(p = p_2(n-2,3,l-1) \), we will have

\[
p(\theta(\lambda_{n-1})) = \begin{pmatrix} s & 0 & 0 \\ 0 & x & y \\ 0 & z & t \end{pmatrix}.
\]

Since \(p(\theta(\epsilon_{n-1})) = \text{diag}(-1,1,1) \) and \(p(\theta(\beta)) = \text{diag}(1,-1,-1) \), the identity (5) implies that \(x = t = 0 \). In particular, \(\theta'(\lambda_{n-1}) \) belongs to the group of monomial matrices \(\mathcal{M}_{n+1} \subset GL_{n+1} \). Since \(\theta'(\Omega_n) \subset \mathcal{M}_{n+1} \), we obtain \(\theta'(\Gamma_n) \subset \mathcal{M}_{n+1} \). If \(\mathcal{M}_{n+1} \cong \mathcal{S}_{n+1} \) is the canonical homomorphism, then \(\phi(\lambda_{n-1}) = (n,n+1) \). Using \(\pi = (n-1,n,n-2) \in S_n \), we obtain

\[
\phi(\lambda_{n-2,n}) = \phi(\sigma^{-1}_n \lambda_{n-1} \sigma_n) = (n-2,n+1).
\]

Then the commutator identity (2) of \(\S1 \) implies that \(\phi(\lambda_{n-2,n-1}) = (n-2,n+1,n) \); on the other hand, \(\phi(\lambda_{n-2,n-1}) = (n-2,n+1) \)—a contradiction.

Case 3. \(b = 0, c \neq 0 \). Then

\[
A^2 = \begin{pmatrix} 1 & 0 \\ 2c & 1 \end{pmatrix}.
\]

Since \(\lambda_{n-1} \) and \(\gamma \) commute, we have

\[
\theta'(\lambda_{n-1}) = \begin{pmatrix} x & 0 & 0 \\ y & x & u \\ v & 0 & W \end{pmatrix},
\]

for some \(x, y \in \mathbb{C}, u \in \mathbb{C}^{1 \times m}, v \in \mathbb{C}^{m \times 1}, W \in M_m(\mathbb{C}) \). The relation \(\gamma = \epsilon_{n-1}^{-1} \lambda_{n-1} \epsilon_{n-1} \lambda_{n-1} \) implies that

\[
x^2 = 1 \quad \text{and} \quad xu - uW = 0,
\]

while the identity \(\epsilon_{1}^{-1} \lambda_{n-1} \epsilon_{1} = \lambda_{n-1}^{-1} \) yields

\[
xu + uW = 0.
\]

So, \(u = 0 \).

Next, since \(\lambda_{n-1} \) commutes with \(\sigma_{(12)} \), \(W \) commutes with \(p_2(n,l)(\theta(\sigma)) \) for any \(\sigma \in \Sigma_n \), to the effect that \(\theta(\lambda_{ij}) \) has the structure

\[
\begin{pmatrix}
\ast & & 0 \\
& & W
\end{pmatrix},
\]

with the same \(W \) for all \(i \neq j \). Then the identity (2) in \(\S1 \) implies that actually \(W = E_l \). Since the elements \(\lambda_{ij}, \epsilon_i, \) and \(\sigma \) generate \(\Gamma_n \), \(\theta \) has the following block structure:

\[
\theta(g) = \begin{pmatrix}
\omega(g) & 0 \\
\ast & \eta(g)
\end{pmatrix}, \quad g \in \Gamma_n,
\]

where \(\omega \) and \(\eta \) have dimension \(n \) and \(l \), respectively. It follows from \(\text{[R1]} \) that \(\omega \) coincides either with \(\mu \) or with \((\det \mu) \mu \) (it cannot be \(\tau \mu \) or \((\det \mu) \tau \mu \), as \(\omega(\lambda_{n-1}) \) is a lower triangular matrix). Replacing \(\theta \) by \((\det \mu) \theta \) if necessary, we may assume
that $\omega = \mu$; in particular, $\omega(\lambda_{ij}) = E_{ij}$. We see that $\theta(\lambda_{nn-1})$ has the following shape:

$$
\begin{pmatrix}
E_{n-2} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & E_l
\end{pmatrix}.
$$

The fact that λ_{nn-1} commutes with ε_1 and $\sigma_{(12)}$ easily implies that v is fixed by $\eta(\Gamma_n)$, and therefore, after conjugation by a suitable matrix of the form diag(E_n, D), $D \in GL_l(C)$, which preserves the shape of η, we may assume that

$$
v = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.
$$

Then, in particular, $\theta(\lambda_{nn-1}) \in G(n + 1, l - 1)$, and therefore $\theta(\Gamma_n) \subset G(n + 1, l - 1)$ as the images under θ of the elements ε_i and σ_π, $\pi \in S_n$, also belong to $G(n + 1, l - 1)$, and together with λ_{nn-1} these elements generate Γ_n. Moreover, on all these elements (including λ_{nn-1}) $p_1(n + 1, l - 1)(\theta)$ coincides with ν. On the other hand, $p_2(n + 1, l - 1)(\theta)$ is E_{l-1} on λ_{ij} and is the direct sum of 1-dimensional representations of Ω_n. So, we finally are able to conclude that θ is equivalent to a representation of the form $\nu \oplus \varkappa$, where \varkappa is a direct sum of 1-dimensional representations of Γ_n, as required.

Case 4. $b \neq 0$, $c = 0$. This case is immediately reduced to Case 3 by applying the automorphism $g \mapsto g^{-1}$ of $GL_n(C)$ (observe that $\theta(\Omega_n)$ lies in the orthogonal group, hence is fixed by τ).

The proof of Theorem 3.1 is now complete.

References

[BMS] H. Bass, J. Milnor, and J-P. Serre, Solution of the congruence subgroup problem for SL_n $(n \geq 3)$ and Sp_{2n} $(n \geq 2)$, Publ. Math. IHES, 33 (1967), 59–137. MR 39:5574

[F] E. Formanek, Characterizing a free group in its automorphism group, J. Algebra, 133 (1990), 424-432. MR 92a:20034

LOW-DIMENSIONAL LINEAR REPRESENTATIONS OF Aut F_n, $n \geq 3$

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
E-mail address: apotapchik@math.uwaterloo.ca

Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
E-mail address: asr3x@wewly.math.virginia.edu