Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Low-dimensional linear representations
of $\mathrm{Aut} \: F_n,$ $n \geq 3$


Authors: A. Potapchik and A. Rapinchuk
Journal: Trans. Amer. Math. Soc. 352 (2000), 1437-1451
MSC (2000): Primary 20C15, 20F28
DOI: https://doi.org/10.1090/S0002-9947-99-02293-X
Published electronically: October 15, 1999
MathSciNet review: 1491874
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify all complex representations of $\mathrm{Aut} \: F_n,$ the automorphism group of the free group $F_n$ $(n \geq 3),$ of dimension $\leq 2n - 2.$ Among those representations is a new representation of dimension $n + 1$ which does not vanish on the group of inner automorphisms.


References [Enhancements On Off] (What's this?)

  • [BL] H. Bass, A. Lubotzky, Automorphisms of groups and of schemes of finite type, Israel J. Math., 44 (1983), 1-22. MR 84i:14031
  • [BMS] H. Bass, J. Milnor, and J-P. Serre, Solution of the congruence subgroup problem for $SL_n$ $(n \geq 3)$ and $Sp_{2n}$ $(n \geq 2),$ Publ. Math. IHES, 33 (1967), 59-137. MR 39:5574
  • [Bo] N. Bourbaki, Groupes et algèbres de Lie, Ch. 7-8, Paris, Hermann, 1974. MR 56:12077
  • [DF] J.L. Dyer, E. Formanek, The automorphism group of a free group is complete, J. London. Math. Soc., 11 (1975), 181-190. MR 52:588
  • [DP] D. okovi\'{c}, V. P. Platonov, Low-dimensional representations of $\mathrm{Aut} \: F_2,$ Manuscripta Math., 89 (1996), 475-509. MR 97b:20052
  • [F] E. Formanek, Characterizing a free group in its automorphism group, J. Algebra, 133 (1990), 424-432. MR 92a:20034
  • [FuH] W. Fulton, J.Harris, ``Representation Theory,'' GTM 129, Springer 1991. MR 93a:20069
  • [JK] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley, 1981. MR 83k:20003
  • [LS] R. Lyndon, P. Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grenzegebiete, 89, Springer, 1977. MR 58:28182
  • [MKS] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory, 2nd ed., Dover Publications, 1976. MR 54:10423
  • [Ma] G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 17, Springer, 1991. MR 92h:22021
  • [N] J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann., 91 (1924), 169-209.
  • [OV] A.L. Onishchik, E.B. Vinberg, Lie Groups and Algebraic Groups, Springer Series in Soviet Mathematics, Springer, 1990. MR 91g:22001
  • [R1] A.S. Rapinchuk, $n$-dimensional linear representations of ${\rm Aut} \: F_n,$ and more, J. Algebra, 197 (1997), 146-152. MR 98k:20055
  • [R2] A.S. Rapinchuk, On the finite dimensional unitary representations of Kazhdan groups, Proc. AMS 127 (1999), 1555-1562. MR 99h:22004

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20C15, 20F28

Retrieve articles in all journals with MSC (2000): 20C15, 20F28


Additional Information

A. Potapchik
Affiliation: Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Email: apotapchik@math.uwaterloo.ca

A. Rapinchuk
Affiliation: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903
Email: asr3x@weyl.math.virginia.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02293-X
Received by editor(s): July 22, 1997
Received by editor(s) in revised form: September 24, 1997
Published electronically: October 15, 1999
Additional Notes: The second author was supported in part by NSF Grant DMS-9700474
Article copyright: © Copyright 1999 American Mathematical Society

American Mathematical Society