Decomposition theorems for groups of diffeomorphisms in the sphere
Authors:
R. de la Llave and R. Obaya
Journal:
Trans. Amer. Math. Soc. 352 (2000), 10051020
MSC (1991):
Primary 58D05, 57S25, 57S05
Published electronically:
May 20, 1999
MathSciNet review:
1608297
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We study the algebraic structure of several groups of differentiable diffeomorphisms in . We show that any given sufficiently smooth diffeomorphism can be written as the composition of a finite number of diffeomorphisms which are symmetric under reflection, essentially onedimensional and about as differentiable as the given one.
 1.
Frédéric
Bien, Global representations of the diffeomorphism group of the
circle, Infinitedimensional Lie algebras and groups
(LuminyMarseille, 1988), Adv. Ser. Math. Phys., vol. 7, World Sci.
Publ., Teaneck, NJ, 1989, pp. 89–107. MR 1026949
(90j:22020)
 2.
Richard
S. Hamilton, The inverse function theorem of Nash
and Moser, Bull. Amer. Math. Soc. (N.S.)
7 (1982), no. 1,
65–222. MR
656198 (83j:58014), http://dx.doi.org/10.1090/S027309791982150042
 3.
Morris
W. Hirsch, Differential topology, SpringerVerlag, New
YorkHeidelberg, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362
(56 #6669)
 4.
Steven
G. Krantz, Lipschitz spaces, smoothness of functions, and
approximation theory, Exposition. Math. 1 (1983),
no. 3, 193–260. MR 782608
(86g:41001)
 5.
Joel
Langer and David
A. Singer, Diffeomorphisms of the circle and geodesic fields on
Riemann surfaces of genus one, Invent. Math. 69
(1982), no. 2, 229–242. MR 674403
(84h:58115), http://dx.doi.org/10.1007/BF01399503
 6.
R.
de la Llave, Remarks on J. Langer and D. A. Singer decomposition
theorem for diffeomorphisms of the circle, Comm. Math. Phys.
104 (1986), no. 3, 387–401. MR 840743
(87h:58174)
 7.
R. de la Llave, R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynamical Systems, 5 (1999), 157184. Preprint available from http://www.ma.utexas.edu/mp_arc
 8.
Jürgen
Moser, A rapidly convergent iteration method and nonlinear
differential equations. II, Ann. Scuola Norm. Sup. Pisa (3)
20 (1966), 499–535. MR 0206461
(34 #6280)
 9.
Helmut
Rüssmann, On optimal estimates for the solutions of linear
difference equations on the circle, Proceedings of the Fifth
Conference on Mathematical Methods in Celestial Mechanics (Oberwolfach,
1975), Part I, 1976, pp. 33–37. MR 0445973
(56 #4306)
 10.
E.
Zehnder, Generalized implicit function theorems with applications
to some small divisor problems. I, Comm. Pure Appl. Math.
28 (1975), 91–140. MR 0380867
(52 #1764)
 11.
E.
Zehnder, Generalized implicit function theorems with applications
to some small divisor problems. II, Comm. Pure Appl. Math.
29 (1976), no. 1, 49–111. MR 0426055
(54 #14001)
 1.
 F. Bien, Global representations of the diffeomorphism group of the circle, Infinite dimensional Lie algebras and groups, Marseille 1988, World Scientific, 1989, pp. 89107. MR 90j:22020
 2.
 R. Hamilton, The inverse function theorem of Nash and Moser, Bull. A.M.S., 7 (1982), 65222. MR 83j:58014
 3.
 M. Hirsch, Differential Topology, SpringerVerlag, 1976. MR 56:6669
 4.
 S. Krantz, Lipschitz spaces, smoothness of functions and approximation theory, Exposition. Math. 3 (1983), 193260. MR 86g:41001
 5.
 J. Langer, D.A. Singer, Diffeomorphisms of the circle and geodesic fields on Riemann surfaces of genus one, Invent. Mat. 69 (1982), 229242. MR 84h:58115
 6.
 R. de la Llave, Remarks on J. Langer and D.A. Singer decomposition theorem for diffeomorphisms of the circle, Comm. Math. Phys., 104 (1986), 387401. MR 87h:58174
 7.
 R. de la Llave, R. Obaya, Regularity of the composition operator in spaces of Hölder functions, Discrete Contin. Dynamical Systems, 5 (1999), 157184. Preprint available from http://www.ma.utexas.edu/mp_arc
 8.
 J. Moser, A rapidly convergent iteration method and nonlinear differential equations II, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 499535. MR 34:6280
 9.
 H. Rüssmann, On optimal estimates for the solutions of linear difference equations on the circle, Celestial Mech., 14 (1976), 3337. MR 56:4306
 10.
 E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I, Comm. Pure and Appl. Math., 28 (1975), 91140. MR 52:1764
 11.
 E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems II, Comm. Pure and Appl. Math., 29 (1976), 49111. MR 54:14001
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
58D05,
57S25,
57S05
Retrieve articles in all journals
with MSC (1991):
58D05,
57S25,
57S05
Additional Information
R. de la Llave
Affiliation:
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712
Email:
llave@math.utexas.edu
R. Obaya
Affiliation:
Departamento Matemática Aplicada a la Ingeniería, Escuela Superior de Ingenieros Industriales, Universidad de Valladolid, 47011 Valladolid, Spain
Email:
rafoba@wmatem.eis.uva.es
DOI:
http://dx.doi.org/10.1090/S000299479902320X
PII:
S 00029947(99)02320X
Keywords:
Decomposition theorems,
diffeomorphism groups
Received by editor(s):
October 24, 1997
Published electronically:
May 20, 1999
Article copyright:
© Copyright 1999
American Mathematical Society
