Characterizations of spectra

with -injective cohomology which satisfy

the Brown-Gitler property

Authors:
David J. Hunter and Nicholas J. Kuhn

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1171-1190

MSC (1991):
Primary 55P42; Secondary 55T15, 55T20

DOI:
https://doi.org/10.1090/S0002-9947-99-02375-2

Published electronically:
February 15, 1999

MathSciNet review:
1621749

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We work in the stable homotopy category of -complete connective spectra having mod homology of finite type. means cohomology with coefficients, and is a left module over the Steenrod algebra .

A spectrum is called *spacelike* if it is a wedge summand of a suspension spectrum, and a spectrum *satisfies the Brown-Gitler property* if the natural map is onto, for all spacelike .

It is known that there exist spectra satisfying the Brown-Gitler property, and with isomorphic to the injective envelope of in the category of unstable -modules.

Call a spectrum *standard* if it is a wedge of spectra of the form , where is a stable wedge summand of the classifying space of some elementary abelian -group. Such spectra have -injective cohomology, and all -injectives appear in this way.

Working directly with the two properties of stated above, we clarify and extend earlier work by many people on Brown-Gitler spectra. Our main theorem is that, if is a spectrum with -injective cohomology, the following conditions are equivalent:

(A) there exist a spectrum whose cohomology is a reduced -injective and a map that is epic in cohomology, (B) there exist a spacelike spectrum and a map that is epic in cohomology, (C) is monic in cohomology, (D) satisfies the Brown-Gitler property, (E) is spacelike, (F) is standard. ( is *reduced* if it has no nontrivial submodule which is a suspension.)

As an application, we prove that the Snaith summands of are Brown-Gitler spectra-a new result for the most interesting summands at odd primes. Another application combines the theorem with the second author's work on the Whitehead conjecture.

Of independent interest, enroute to proving that (B) implies (C), we prove that the homology suspension has the following property: if an -connected space admits a map to an -fold suspension that is monic in mod homology, then is onto in mod homology.

**[A]**G. Arone,*A generalization of Snaith-type filtration*, preprint, 1997.**[BC]**E. H. Brown and R. L. Cohen,*The Adams Spectral Sequence of and Brown-Gitler Spectra*, Annals of Mathematics Studies**113**(1987), 101-125. MR**89d:55020****[BG]**E. H. Brown and S. Gitler,*A Spectrum whose Cohomology is a Certain Cyclic Module over the Steenrod Algebra*, Topology**12**(1973), 283-295. MR**52:11893****[BP]**E. H. Brown and F. P. Peterson,*On the Stable Decomposition of*, Transactions of the American Mathematical Society**243**(1978), 287-298. MR**58:18424****[BMMS]**R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger,*Ring spectra and their applications*, Springer Lecture Notes in Mathematics**1176**, Springer, 1986. MR**88e:55001****[Ca]**G.Carlsson,*G.B.Segal's Burnside ring conjecture for ,*Topology**22**(1983), 83-103.**[CLM]**F. R. Cohen, T. J. Lada, and J. P. May,*The Homology of Iterated Loop Spaces*, Springer Lecture Notes in Mathematics**533**, Springer, 1976. MR**55:9096****[CMM]**F. R. Cohen, M. Mahowald, and R. J. Milgram,*The Stable Decomposition of the Double Loop Space of a Sphere*, A. M. S. Proc. Symp. Pure Math.**32**(1978), 225-228. MR**80j:55009****[C1]**R. L. Cohen,*Odd Primary Infinite Families in Stable Homotopy Theory*, Memoirs of the A. M. S.**242**(1981). MR**82d:55011****[C2]**R. L. Cohen,*Representations of Brown-Gitler spectra*, Springer L. N. Math.**788**(1980), 399-417. MR**81k:55011****[FN]**R. Fox and L. Neuwirth,*The braid groups*, Math. Scand.**10**(1962), 119-126. MR**27:742****[G1]**P.G.Goerss,*A direct construction for the duals of Brown-Gitler spectra*, Ind. U. Math. J.**34**(1985), 733-751. MR**87g:55005****[G2]**P.G.Goerss,*Unstable projectives and stable Ext: with applications*, Proc. London Math. Soc.**53**(1986), 539-561. MR**88d:55011****[GLM]**P. Goerss, J. Lannes, and F. Morel,*Hopf Algebras, Witt Vectors, and Brown-Gitler Spectra*, A.M.S. Cont. Math.**146**(1993), 111-128. MR**95a:55007****[HaK]**J. C. Harris and N. J. Kuhn,*Stable decompositions of classifying spaces of finite abelian -groups*, Math. Proc. Camb. Phil. Soc.**103**(1988), 427-449. MR**89d:55021****[H]**D.J.Hunter,*Stable homotopy groups of spheres and Brown-Gitler spectra*, Ph.D. dissertation, University of Virginia, 1997.**[HuK]**D.J.Hunter and N.J.Kuhn,*Mahowaldean families of elements in stable homotopy groups revisited*, Math. Proc. Camb. Phil. Soc., to appear.**[K1]**N. J. Kuhn,*A Kahn-Priddy sequence and a conjecture of G. W. Whitehead*, Math. Proc. Camb. Phil. Soc.**92**(1982), 467-483. MR**85f:55007b****[K2]**N. J. Kuhn,*Spacelike resolutions of spectra*, A. M. S. Cont. Math. Series**19**(1983), 153-165. MR**85d:55009****[K3]**N. J. Kuhn,*New relationships among loopspaces, symmetric products, and Eilenberg MacLane space*, preprint, 1998.**[KP]**N. J. Kuhn and S. B. Priddy,*The transfer and Whitehead's conjecture*, Math. Proc. Camb. Phil. Soc.**98**(1985), 459-480. MR**87g:55030****[L]**J.Lannes,*Sur le -dual du -ème spectre de Brown-Gitler*, Math.Zeit.**199**(1988), 29-42. MR**89h:55020****[LS]**J.Lannes and L.Schwartz,*Sur la structure des -modules instables injectifs*, Topology**28**(1989), 153-169. MR**90h:55027****[LZ1]**J.Lannes and S.Zarati,*Sur les -injectifs*, Ann.Scient.Ec.Norm.Sup.**19**(1986), 1-31. MR**89a:55032****[LZ2]**J.Lannes and S.Zarati,*Sur les foncteurs dérivés de la déstabilisation*, Math. Zeit.**194**(1987), 25-59. MR**88j:55014****[M]**M. Mahowald,*A New Infinite Family in*, Topology**16**(1977), 249-256. MR**56:3838****[Mas]**W. S. Massey,*On the Stiefel-Whitney classes of a manifold*, Amer. J. Math.**82**(1960), 92-102. MR**22:1918****[May]**J. P. May,*The Geometry of Iterated Loop Spaces*, Springer Lecture Notes in Mathematics**271**, Springer, 1972. MR**54:8623b****[Mc]**J. McCleary,*User's guide to spectral sequences*, Math. Lecture Series**12**, Publish or Perish Inc., 1985. MR**87f:55014****[Mi]**H. Miller,*The Sullivan Conjecture on Maps from Classifying Spaces*, Annals of Mathematics**120**(1984), 39-87. MR**85i:55012****[MM]**J. W. Milnor and J. C. Moore,*On the structure of Hopf algebras*, Annals of Mathematics**81**(1965), 211-264. MR**30:4259****[MP]**S. A. Mitchell and S. B. Priddy,*Stable splittings derived from the Steinberg module*, Topology**22**(1983), 285-298. MR**85f:55005****[S]**L. Schwartz,*Unstable modules over the Steenrod algebra and Sullivan's fixed point conjecture,*Chicago Lectures in Math., Unversity of Chicago Press, 1994. MR**95d:55017****[Si]**W. M. Singer,*Iterated loop functors and the homology of the Steenrod algebra II: A chain complex for*, J. Pure App. Math.**16**(1980), 85-97. MR**81b:55040****[Sn]**V. P. Snaith,*A Stable Decomposition for*, Journal of the London Mathematical Society**2**(1974), 577-583. MR**49:3918****[Z]**S. Zarati,*Dérivés du foncteur de déstabilisation en caractéristique impaire et applications*, Thése de doctorat, Université Paris-Sud (Orsay), 1984.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
55P42,
55T15,
55T20

Retrieve articles in all journals with MSC (1991): 55P42, 55T15, 55T20

Additional Information

**David J. Hunter**

Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Address at time of publication:
Department of Mathematics, North Central College, Naperville, Illinois 60540

Email:
dahunter@noctrl.edu

**Nicholas J. Kuhn**

Affiliation:
Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903

Email:
njk4x@virginia.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02375-2

Received by editor(s):
August 27, 1997

Published electronically:
February 15, 1999

Additional Notes:
Research by the second author was partially supported by the N.S.F

Article copyright:
© Copyright 1999
American Mathematical Society