Livsic theorems for hyperbolic flows

Author:
C. P. Walkden

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1299-1313

MSC (1991):
Primary 58F15; Secondary 22E99

DOI:
https://doi.org/10.1090/S0002-9947-99-02428-9

Published electronically:
September 17, 1999

MathSciNet review:
1637106

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider Hölder cocycle equations with values in certain Lie groups over a hyperbolic flow. We extend Livsic's results that measurable solutions to such equations must, in fact, be Hölder continuous.

**[Bo]**R. Bowen,*Symbolic dynamics for hyperbolic flows*, Amer. J. Math.**95**(1973), 429-459. MR**49:4041****[BR]**R. Bowen and D. Ruelle,*The ergodic theory of Axiom flows*, Invent. Math.**29**(1975), 181-202. MR**52:1786****[CFS]**I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinai,*Ergodic Theory*, Springer, Berlin, 1982. MR**87f:28019****[GK]**V. Guillemin and D. Kazhdan,*On the cohomology of certain dynamical systems*, Topology**19**(1980), 291-299. MR**81j:58067****[HK]**S. Hurder and A. Katok,*Differentiability, rigidity and Godbillon-Vey classes for Anosov flows*, Publ. Math., I.H.E.S.**72**(1990), 5-61. MR**92b:58179****[Jo]**J. -L. Journé,*On a regularity problem occuring in connection with Anosov diffeomorphisms*, Comm. Math. Phys.**106**(1986), 345-352. MR**88b:58103****[KH]**A. Katok and B. Hasselblatt,*Introduction to the Modern Theory of Dynamical Systems*, Encyclopædia of Math., vol. 54, C.U.P., Cambridge, 1995. MR**96c:58055****[Li1]**A. N. Liv\v{s}ic,*Homology properties of Y-systems*, Math. Notes**10**(1971), 758-763.**[Li2]**A. N. Liv\v{s}ic,*Cohomology of dynamical systems*, Math. U.S.S.R., Izv.**36**(1972), 1278-1301. MR**48:12606****[Ll1]**R. de la Llave,*Smooth conjugacy and S-R-B measures for uniformly and non-uniformly hyperbolic systems*, Comm. Math. Phys.**150**(1992), 289-320. MR**94a:58153****[Ll2]**R. de la Llave,*Analytic regularity of solutions of Livsic's cohomology equation and some applications to analytic conjugacy of hyperbolic dynamical systems*, Ergodic Theory Dynam. Systems**17**(1997), 649-662. MR**98d:58136****[LMM]**R. de la Llave, J. M. Marco, and E. Moriyon,*Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomological equation*, Annals of Math.**123**(1986), 537-611. MR**88h:58091****[NP]**M. Nicol and M. Pollicott,*Measurable cocycle rigidity for some non-compact groups*, preprint, UMIST and Manchester, 1997.**[NT1]**V. Ni\c{t}ic\u{a} and A. Török,*Regularity results for the solutions of the Livsic cohomology equation with values in diffeomorphism groups*, Ergodic Theory Dynam. Systems**16**(1996), 325-333. MR**97m:58151****[NT2]**V. Ni\c{t}ic\u{a} and A. Török,*Regularity of the transfer map for cohomologous cocycles*, Ergodic Theory Dynam. Systems**18**(1998), 1187-1209. CMP**99:03****[Pa1]**W. Parry,*Skew products of shifts with a compact Lie group*, J. London Math. Soc.**56**(1997), 395-404. CMP**98:06****[Pa2]**W. Parry,*The Liv\v{s}ic periodic point theorem for two non-abelian cocycles*, preprint, Warwick, 1997.**[PP1]**W. Parry and M. Pollicott,*Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics*, Astérique, vol. 187-188, Société Mathématique de France, 1990. MR**92f:58141****[PP2]**W. Parry and M. Pollicott,*The Livsic cocycle equation for compact Lie group extensions of hyperbolic systems*, J. London Math. Soc.**56**(1997), 405-416. CMP**98:06****[Ra]**M. Ratner,*Markov partitions for Anosov flows on -dimensional manifolds*, Israel J. Math.**15**(1973), 92-114. MR**49:4042****[Sh]**M. Shub,*Global Stability of Dynamical Systems*, Springer, Berlin, 1987. MR**87m:58086****[Wa1]**C. P. Walkden,*Liv\v{s}ic regularity theorems for twisted cocycle equations over hyperbolic systems*, J. London Math. Soc., to appear.**[Wa2]**C. P. Walkden,*Stable ergodicity of skew products of one-dimensional hyperbolic flows*, Discrete and Continuous Dynamical Systems, to appear.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58F15,
22E99

Retrieve articles in all journals with MSC (1991): 58F15, 22E99

Additional Information

**C. P. Walkden**

Affiliation:
Mathematics Institute, University of Warwick, Coventry CV4 7AL, U.K.

Address at time of publication:
Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Email:
cwalkden@ma.man.ac.uk

DOI:
https://doi.org/10.1090/S0002-9947-99-02428-9

Received by editor(s):
October 14, 1997

Published electronically:
September 17, 1999

Additional Notes:
Parts of this paper formed parts of a Ph.D. thesis written at Warwick University. Research supported by EPSRC Grant 94004020.

Article copyright:
© Copyright 1999
American Mathematical Society