A bracket power characterization

of analytic spread one ideals

Authors:
L. J. Ratliff Jr. and D. E. Rush Jr.

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1647-1674

MSC (1991):
Primary 13A15, 13B20, 13C10; Secondary 13H99

DOI:
https://doi.org/10.1090/S0002-9947-99-02434-4

Published electronically:
July 26, 1999

MathSciNet review:
1641107

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The main theorem characterizes, in terms of bracket powers, analytic spread one ideals in local rings. Specifically, let be regular nonunits in a local (Noetherian) ring and assume that , the integral closure of , where . Then the main result shows that for all but finitely many units in that are non-congruent modulo and for all large integers and it holds that for and not divisible by , where is the -th bracket power of . And, conversely, if there exist positive integers , , and such that has a basis such that , then has analytic spread one.

**[ES]**P. Eakin and A. Sathaye,*Prestable ideals*, J. Algebra**41**(1976), 439-454. MR**54:7449****[HJLS]**W. Heinzer, B. Johnston, D. Lantz, and K. Shah,*The Ratliff-Rush ideal in a Noetherian ring: A survey*, Methods In Module Theory, Lecture Notes in Pure and Applied Math, No. 140, 1993. MR**93k:13004****[KMOR]**D. Katz, S. McAdam, J. Okon, and L. J. Ratliff, Jr.,*Essential prime divisors and projectively equivalent ideals*, J. Algebra**109**(1987), 468-478. MR**88i:13016****[KR]**D. Katz and L. J. Ratliff, Jr.,*U-essential prime divisors and sequences over an ideal*, Nagoya Math. J.**103**(1986), 39-66. MR**87j:13002****[M]**S. McAdam,*Asymptotic Prime Divisors*, LNM vol 1023, Springer-Verlag, 1983. MR**85f:13018****[MR]**S. McAdam and L. J. Ratliff, Jr.,*Persistent primes and projective extensions of ideals*, Comm. Algebra**16**(1988), 1141-1185. MR**89i:13003****[N]**M. Nagata,*Local Rings*, Interscience Tracts In Pure and Applied Math. No. 13, Interscience, New York, NY, 1962. MR**27:5790****[NR]**D. G. Northcott and D. Rees,*Reductions of ideals in local rings*, Math. Proc. Cambridge Philos. Soc.**50**(1954), 145-158. MR**15:59a****[RR1]**L. J. Ratliff, Jr. and David E. Rush,*Two notes on reductions of ideals*, Indiana Univ. Math. J.**27**(1978), 929-934. MR**58:22034****[RR2]**L. J. Ratliff, Jr. and David E. Rush,*Triangular powers of integers from determinants of binomial coefficient matrices*, Linear Algebra and Appl. (to appear).**[ZS1]**O. Zariski and P. Samuel,*Commutative Algebra, Vol. I*, D. Van Nostrand Co., Inc., Princeton, NJ, 1958. MR**52:5641****[ZS2]**O. Zariski and P. Samuel,*Commutative Algebra, Vol. II*, D. Van Nostrand Co., Inc., Princeton, NJ, 1960. MR**52:10706**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
13A15,
13B20,
13C10,
13H99

Retrieve articles in all journals with MSC (1991): 13A15, 13B20, 13C10, 13H99

Additional Information

**L. J. Ratliff Jr.**

Affiliation:
Department of Mathematics, University of California, Riverside, California 92521

Email:
ratliff@math.ucr.edu

**D. E. Rush Jr.**

Affiliation:
Department of Mathematics, University of California, Riverside, California 92521

Email:
rush@math.ucr.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02434-4

Keywords:
Analytic spread,
asymptotic prime divisor,
binomial coefficient,
bracket power of an ideal,
essential prime divisor,
integral closure of an ideal,
local ring,
Noetherian ring,
persistent prime divisor,
prenormal ideal,
projectively equivalent ideals,
Ratliff-Rush closure of an ideal,
reduction of an ideal,
superficial element

Received by editor(s):
December 20, 1997

Published electronically:
July 26, 1999

Article copyright:
© Copyright 2000
American Mathematical Society