Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sheared algebra maps and operation bialgebras for mod 2 homology and cohomology


Authors: David J. Pengelley and Frank Williams
Journal: Trans. Amer. Math. Soc. 352 (2000), 1453-1492
MSC (1991): Primary 55S99; Secondary 16W30, 16W50, 55S10, 55S12, 57T05
DOI: https://doi.org/10.1090/S0002-9947-99-02468-X
Published electronically: September 9, 1999
MathSciNet review: 1653375
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The mod 2 Steenrod algebra $\mathcal{A}$ and Dyer-Lashof algebra $\mathcal{R} $ have both striking similarities and differences arising from their common origins in ``lower-indexed'' algebraic operations. These algebraic operations and their relations generate a bigraded bialgebra $\mathcal{K}$, whose module actions are equivalent to, but quite different from, those of $ \mathcal{A}$ and $\mathcal{R}$. The exact relationships emerge as ``sheared algebra bijections'', which also illuminate the role of the cohomology of $ \mathcal{K}$. As a bialgebra, $\mathcal{K}^{*}$ has a particularly attractive and potentially useful structure, providing a bridge between those of $\mathcal{A^{*}}$ and $\mathcal{R^{*}}$, and suggesting possible applications to the Miller spectral sequence and the $\mathcal{A}$ structure of Dickson algebras.


References [Enhancements On Off] (What's this?)

  • [Ada] J.F. Adams, Infinite loop spaces, Princeton Univ. Press, 1978. MR 80d:55001
  • [Ade] J. Adem, The relations on Steenrod powers of cohomology classes, in Algebraic Geometry and Topology (ed. R.H. Fox), Princeton Univ. Press, 1957, pp. 191-238. MR 19:50c
  • [AK] S. Araki, T. Kudo, Topology of $H_{n}$-spaces and $H$-squaring operations, Mem. Fac. Sci. Kyusyu Univ. Ser. A 10 (1956), 85-120. MR 19:442b
  • [BJ] T.P. Bisson, A. Joyal, $Q$-rings and the homology of the symmetric groups, Contemporary Mathematics 202 (1997), 235-286. MR 98e:55021
  • [BPW] T.P. Bisson, D.J. Pengelley, F. Williams, Stabilizing the lower operations for mod two cohomology, in Homotopy Invariant Algebraic Structures: A Conference in Honor of J. Michael Boardman (ed. J. P. Meyer, J. Morava, and W. J. Wilson), Contemporary Mathematics, to appear.
  • [BM] S.R. Bullett, I.G. Macdonald, On the Adem relations, Topology 21 (1982), 329-332. MR 83h:55035
  • [CCPS] H.E.A. Campbell, F.R. Cohen, F.P. Peterson, P.S. Selick, Self-maps of loop spaces. II, Trans. Amer. Math. Soc. 293 (1986), 41-51. MR 87e:55010b
  • [CPS] H.E.A. Campbell, F.P. Peterson, P.S. Selick, Self-maps of loop spaces. I, Trans. Amer. Math. Soc. 293 (1986), 1-39. MR 87e:55010a
  • [CLM] F.R. Cohen, T.J. Lada, J. P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533 (1976), Springer, New York. MR 55:9096
  • [DL] E. Dyer, R.K. Lashof, Homology of iterated loop spaces, Amer. J. Math. 84 (1962), 35-88. MR 25:4523
  • [GP] V. Giambalvo, F.P. Peterson, $\mathcal{A}$-generators for ideals in the Dickson algebra, to appear.
  • [GPR] V. Giambalvo, D.J. Pengelley, D.C. Ravenel, A fractal-like algebraic splitting of the classifying space for vector bundles, Trans. Amer. Math. Soc. 307 (1986), 433-455. MR 89c:55014
  • [HP] N.H.V. Hung, F.P. Peterson, $\mathcal{A}$-generators for the Dickson algebra, Trans. Amer. Math. Soc. 347 (1995), 4687-4728. MR 96c:55022
  • [H] T. Hunter, On the homology spectral sequence for topological Hochschild homology, Trans. Amer. Math. Soc. 348 (1996), 3941-3953. MR 96m:55032
  • [KL1] D. Kraines, T. Lada, The cohomology of the Dyer-Lashof algebra, in Proc., Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., 145-152. MR 85b:55032
  • [KL2] D. Kraines, T. Lada, Applications of the Miller spectral sequence, in Proc. Conf. Current Trends in Algebraic Topology (1981), Canadian Math. Soc. Conf. Proc. 2, Part 1, 479-497, American Mathematical Society, 1982. MR 84f:55006
  • [Li] J.P. Lin, Steenrod connections and connectivity in $H$-spaces, Memoirs of the Amer. Math. Soc. 369 (1987), 1-87. MR 88m:55013
  • [Lo] L. Lomonaco, A phenomenon of reciprocity in the universal Steenrod algebra, Trans. Amer. Math. Soc. 330 (1992), 813-821. MR 92f:55027
  • [Mad] I. Madsen, On the action of the Dyer-Lashof algebra in $H_{*}(G)$, Pacific J. Math. 60 (1975), 235-275. MR 52:9228
  • [MM] I. Madsen, R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Princeton Univ. Press, 1979. MR 81b:57014
  • [May1] J.P. May, A general algebraic approach to Steenrod operations, in Proc. Conf., The Steenrod Algebra and its Applications (ed. F. Peterson), Lecture Notes in Mathematics 168 (1970), Springer, New York, pp. 153-231. MR 43:6915
  • [May2] J.P. May, Homology operations on infinite loop spaces, in Proc. Conf., Algebraic Topology (Madison, 1970), Proc. Symp. Pure Math. 22, Amer. Math. Soc., 1971, pp. 171-185. MR 47:7740
  • [Mill] H. Miller, A spectral sequence for the homology of an infinite delooping, Pacific J. Math. 79 (1978), 139-155. MR 80g:55019
  • [Miln] J. Milnor, The Steenrod algebra and its dual, Annals of Math. (2) 67 (1958), 150-171. MR 20:6092
  • [Mu] H. Mui, Modular invariant theory and cohomology algebras of symmetric groups, Jour. Fac. Sci. Univ. Tokyo, Sect. 1A, 22 (1975), 319-369. MR 54:10440
  • [N] G. Nishida, Cohomology operations in infinite loop spaces, Proc. Japan Acad. 44 (1968), 104-109. MR 39:2156
  • [PPW] D.J. Pengelley, F. P. Peterson, F. Williams, A global structure theorem for the mod two Dickson algebras, and unstable cyclic modules over the Steenrod and Kudo-Araki-May algebras, to appear.
  • [PW1] D.J. Pengelley, F. Williams, Limits of algebras with shifting and a relationship between the Steenrod and Dyer-Lashof algebras, to appear.
  • [Pr] S.B. Priddy, Koszul Resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. MR 42:346
  • [Po] M.M. Postnikov, The lower Steenrod algebra, Uspeckhi Mat. Nauk 49 (1994), 187-188. MR 95f:55016
  • [Sm] V.A. Smirnov, Radical Hopf algebras and the Steenrod algebra, Uspekhi Mat. Nauk 42 (1987), 245-246. MR 88k:55017
  • [Stee1] N.E. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 213-217. MR 14:1005d
  • [Stee2] N.E. Steenrod, Cohomology operations derived from the symmetric group, Comment. Math. Helv. 31 (1957), 195-218. MR 19:1069i
  • [Stee3] N.E. Steenrod, D.B.A. Epstein, Cohomology Operations, Princeton Univ. Press, 1962. MR 26:3056
  • [Stei] R. Steiner, Homology operations and power series, Glasgow Math. J. 24 (1983), 161-168. Corrigendum, Glasgow Math. J. 26 (1985), 105. MR 85e:55037; MR 86d:55023
  • [W] C. Wilkerson, A primer on the Dickson invariants, in Proc., Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemporary Math. 19 (1983), Amer. Math. Soc., 421-434. MR 85c:55017

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 55S99, 16W30, 16W50, 55S10, 55S12, 57T05

Retrieve articles in all journals with MSC (1991): 55S99, 16W30, 16W50, 55S10, 55S12, 57T05


Additional Information

David J. Pengelley
Affiliation: Department of Mathematics, New Mexico State University, Las Cruces, New Mexico 88003
Email: davidp@nmsu.edu

Frank Williams
Affiliation: Department of Mathematics, New Mexico State University, Las Cruces, New Mexico 88003
Email: frank@nmsu.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02468-X
Keywords: Steenrod algebra, Dyer-Lashof algebra, bialgebras, sheared algebra map, Kudo-Araki-May algebra, Nishida relations
Received by editor(s): December 2, 1997
Published electronically: September 9, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society