Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An approach to symmetrization
via polarization


Authors: Friedemann Brock and Alexander Yu. Solynin
Journal: Trans. Amer. Math. Soc. 352 (2000), 1759-1796
MSC (1991): Primary 28D05, 58G35, 35A30, 35B05, 35B50, 35J60, 35K55, 26D10
DOI: https://doi.org/10.1090/S0002-9947-99-02558-1
Published electronically: December 10, 1999
MathSciNet review: 1695019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that the Steiner symmetrization of a function can be approximated in $L^p ({\mathbb R}^n )$ by a sequence of very simple rearrangements which are called polarizations. This result is exploited to develop elementary proofs of many inequalities, including the isoperimetric inequality in Euclidean space. In this way we also obtain new symmetry results for solutions of some variational problems. Furthermore we compare the solutions of two boundary value problems, one of them having a "polarized" geometry and we show some pointwise inequalities between the solutions. This leads to new proofs of well-known functional inequalities which compare the solutions of two elliptic or parabolic problems, one of them having a "Steiner-symmetrized" geometry. The method also allows us to investigate the case of equality in the inequalities. Roughly speaking we prove that the equality sign is valid only if the original problem has the symmetrized geometry.


References [Enhancements On Off] (What's this?)

  • [A] H.W. Alt: Lineare Funktionalanalysis. 2nd edn., Springer-Verlag 1992.
  • [ADLT] A. Alvino, J.I. Diaz, P.-L. Lions, G. Trombetti: Équations elliptiques et symétrization de Steiner. C.R. Acad. Sci. Paris, t.314, Série I (1992), 1015-1020. MR 93f:35047
  • [ALT1] A. Alvino, P.-L. Lions, G. Trombetti: On optimization problems with prescribed rearrangements. Nonlin. Analysis T.M.A. 13 (1989), 185-220. MR 90c:90236
  • [ALT2] A. Alvino, P.-L. Lions, G. Trombetti: Comparison results for elliptic and parabolic equations via symmetrization: A new approach. Differential and Integral Equations 4, (1991), 25-50. MR 91h:35023
  • [ALT3] A. Alvino, P.-L. Lions, G. Trombetti: Comparison results for elliptic and parabolic equations via Schwarz symmetrization. Ann. Inst. Poincaré, Anal. non lineáire 7(2) (1990), 37-65.MR 91f:35022
  • [Bae1] A. Baernstein II: Integral means, univalent functions and circular symmetrization. Acta Math. 133 (1974), 139-169.MR 54:5456
  • [Bae2] A. Baernstein II: A unified approach to symmetrization. in: Partial Differential Equations of Elliptic Type, eds. A. Alvino et al, Symposia matematica 35, Cambridge Univ. Press 1995, 47-91.MR 96e:26019
  • [BT] A. Baernstein II, B.A. Taylor: Spherical rearrangements, subharmonic functions, and $^* $-functions in $n$-space. Duke Math. J. 43 (1976), 245-268.MR 53:5906
  • [Ban] C. Bandle: Isoperimetric inequalities and applications. Pitman, Boston 1980.MR 81e:35095
  • [Be] W. Beckner: Sobolev inequalities, the Poisson semigroup and analysis on the sphere $S^n $. Proc. Nat. Acad. Sci. U.S.A. 89 (1992), 4816-4819.MR 93d:26018
  • [BN] H. Berestycki, L. Nirenberg: On the method of moving planes and the sliding method. Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no.1, 1-37.MR 93a:35048
  • [BLL] H.J. Brascamp, E.H. Lieb, J.M. Luttinger: A general rearrangement inequality for multiple integrals. J. Funct. Anal. 17 (1974), 227-237. MR 49:10835
  • [Br] F. Brock: Continuous polarization and Symmetry of Solutions of Variational Problems with Potentials. in: Calculus of variations, applications and computations, Pont-à-Mousson 1994, eds. C. Bandle et al., Pitman Research Notes in Math. 326 (1995), 25-35. CMP 97:04
  • [BS] F. Brock, A. Yu. Solynin: An approach to continuous symmetrization via polarization, in preparation.
  • [BuZ] Yu.D. Burago, V.A. Zalgaller: Geometric inequalities. Springer- Verlag, Berlin 1988.MR 89b:52020
  • [CZR] J.A. Crowe, J.A. Zweibel, P.C. Rosenbloom: Rearrangements of functions. J. Funct. Anal. 66 (1986), 432-438.MR 87j:28003
  • [Da] E.N. Dancer: Some notes on the method of moving planes. Bull. Austr. Math. Soc. 46 (1992), no.3, 425-434.MR 93a:35080
  • [Di] J.I. Diaz: Nonlinear PDE and free boundaries. Vol.I, Elliptic equations. Pitman Research Notes in Math. 106 (1985).MR 88d:35058
  • [DS] N. Dunford, J.T. Schwartz: Linear Operators I. Interscience Publishers, New York 1958.MR 22:8302
  • [Du1] V.N. Dubinin: Transformation of functions and Dirichlet's principle. (in Russian), Math. Zametki 38 (1985), 49-55; English transl. in Math. Notes 38 (1985), 539-542.MR 87j:31005
  • [Du2] V.N. Dubinin: Transformations of capacitors in space. (in Russian), Dokl. Akad. Nauk SSSR 296 (1988), 18-20, English transl. in Soviet Math. Dokl. 36 (1988), 217-219.MR 89d:31003
  • [Du3] V.N. Dubinin: Capacities and geometric transformations in $n$-space. Geom. and Funct. Anal. 3 (1993), 342-369.MR 94f:31008
  • [Du4] V.N. Dubinin: Symmetrization in geometric theory of functions of complex variables. Uspehi Mat. Nauk 49 (1994), 3-76.MR 96h:30054
  • [ESh] M. Essén, D.F. Shea: On some questions of uniqueness in the theory of symmetrizations. Ann. Acad. Fenn. Ser.A I, 4 (1978/79), 311-340.MR 81d:30002
  • [F] A. Friedman: Variational principles and free boundary problems. Wiley- Interscience, N.Y. 1982.MR 84e:35153
  • [GNN] B. Gidas, W.-M. Ni, L. Nirenberg: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68 (1979), 209-243.MR 80h:35043
  • [GT] D. Gilbarg, N.S. Trudinger: Elliptic partial differential equations of second order. 2nd edn., Springer- Verlag, Berlin 1983.MR 86c:35035
  • [Ha] H. Hadwiger: Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer- Verlag, Berlin 1957.MR 21:1561
  • [He] A. Henrot: Continuity with respect to the domain for the Laplacian: a survey. Control Cybernetics 23(3) (1994), 427-443.MR 95i:35030
  • [Ka1] B. Kawohl: Rearrangements and Convexity of Level Sets in PDE. Springer lecture notes 1150 (1985).MR 87a:35001
  • [Ka2] B. Kawohl: On the simple shape of stable equilibria. in: Geometry of Solutions to Partial Differential Equations, ed. G. Talenti, Symposia matematica 30, Academic Press 1989, 73-89.MR 91f:35010
  • [Kac] J. Ka\v{c}ur: Method of Rothe in Evolution Equations. Teubner-Verlag, Leipzig 1985.MR 87j:35004
  • [Ke] H.B. Keller: Some positone problems suggested by nonlinear heat generation. in: "Bifurcation Theory and Nonlinear Eigenvalue Problems", ed. J.B. Keller / St. Antman, Benjamin, N.Y. 1969, 217-255.
  • [Kes1] S. Kesavan: On a comparison theorem via symmetrization. Proc. Roy. Soc. Edinburgh 119 A (1991), 159-167.MR 92h:35057
  • [Kes2] S. Kesavan: Some remarks on a result of Talenti. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 15 (1991), 453-465.MR 90k:31007
  • [Kes3] S. Kesavan: Comparison theorems via Schwarz symmetrization - a survey. Symposia mathematica 35 (1994), 185-196.MR 95f:35060
  • [L] B.E. Levitskii: $k$-symmetrization and extremal rings. (in Russian), Math. Anal. Kuban State Univ. Krasnodar, 1971, 35-40.
  • [PS] G. Polya, G. Szegö: Isoperimetric inequalities in mathematical physics. Ann. Math. Studies 27 (1952), Princeton Univ. Press.MR 13:270d
  • [Sa] J. Sarvas: Symmetrization of condensers in $n$-space. Ann. Acad. Sci. Fenn. Ser. A1, 522 (1972), 1-44.MR 50:606
  • [Sch] E. Schmidt: Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperi- metrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie I,II. Math. Nachrichten 1 (1948), 81-157; 2 (1949), 171-244.MR 10:471d; MR 11:534l
  • [So1] A.Yu. Solynin: Continuous symmetrization of sets. Zap. Nauchn. Semin. POMI 185 (1990), 125-139.MR 92k:28012
  • [So2] A. Yu. Solynin: Application of the polarization for proofs of functional inequalities. (in Russian), Russian Academy of Sciences, St. Petersburg, PDMI Preprint 10 (1995).
  • [St] J. Steiner: Gesammelte Werke. Vol.2, Reimer- Verlag, Berlin 1882.
  • [Ta1] G. Talenti: Elliptic equations and rearrangements. Ann. Scuola Norm. Pisa Cl. Sci. (4) 3 (1976), 697-718.MR 58:29170
  • [Ta2] G. Talenti: Best constant in Sobolev inequality. Ann. Mat. Pura Appl., Ser. 4, 110 (1976), 353-372.MR 57:3846
  • [Ta3] G. Talenti: The standard isoperimetric theorem. in: Handbook of Convex Geometry, Volume A, North-Holland, Amsterdam 1993, 73-124.MR 94h:49065
  • [We1] A. Weitsman: Spherical symmetrization in the theory of PDE. Comm. PDE 8 (1983), 545-561.MR 85d:35028
  • [We2] A. Weitsman: Symmetrization and the Poincaré metric. Annals of Math. 124 (1986), 159-169.MR 87h:30051
  • [Wo] V. Wolontis: Properties of conformal invariants. Amer. Journ. Math., 74 (1952), 587-606.MR 14:36c

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 28D05, 58G35, 35A30, 35B05, 35B50, 35J60, 35K55, 26D10

Retrieve articles in all journals with MSC (1991): 28D05, 58G35, 35A30, 35B05, 35B50, 35J60, 35K55, 26D10


Additional Information

Friedemann Brock
Affiliation: Mathematisches Institut, Universität Köln, Weyertal 90, D 50923 Köln, Germany
Address at time of publication: Department of Mathematics, University of Missouri-Columbia, Mathematical Sciences Building, Columbia, Missouri 65211
Email: brock@math.missouri.edu

Alexander Yu. Solynin
Affiliation: Mathematisches Institut, Universität Köln, Weyertal 90, D 50923 Köln, Germany; Russian Academy of Sciences, V.A. Steklov Mathematical Institute, St. Petersburg Branchm, Fontanka 27, 191011 St. Petersburg, Russia
Email: solynin@pdmi.ras.ru

DOI: https://doi.org/10.1090/S0002-9947-99-02558-1
Keywords: Steiner symmetrization, rearrangement, polarization, integral inequality, boundary value problem, comparison theorem, maximum principle, uniqueness theorem
Received by editor(s): May 15, 1996
Published electronically: December 10, 1999
Additional Notes: Research supported by Volkswagen-Stiftung, RiP-program
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society