Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Topological Hochschild homology of number rings

Authors: Ayelet Lindenstrauss and Ib Madsen
Journal: Trans. Amer. Math. Soc. 352 (2000), 2179-2204
MSC (2000): Primary 19D55; Secondary 13D03, 19D50, 55Q52
Published electronically: February 16, 2000
MathSciNet review: 1707702
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate an explicit formula for the topological Hochschild homology of a discrete valuation ring of characteristic zero with finite residue field. From this we deduce the topological Hochschild homology of global number rings.

References [Enhancements On Off] (What's this?)

  • [B] M. Bökstedt, Topological Hochschild homology, preprint (Bielefeld).
  • [B1] M. Bökstedt, Topological Hochschild homology of $\mathbf{Z}$ and $\mathbf{Z}/p$, preprint (Bielefeld).
  • [BM] M. Bökstedt, I. Madsen, Algebraic K-theory of local number fields: the unramified case, in Prospects in Topology (Princeton, 1994), Ann. of Math. Stud., vol. 139, Princeton Univ. Press, Princeton, NJ, 1995, pp. 28-57. MR 97e:19004
  • [Br] L. Breen, Extensions du groupe additif, Publ. Math. I.H.E.S. 48 (1978) 39-123. MR 81f:14011
  • [Bro] W. Browder, Torsion in $H$-spaces, Annals of Math. 74 (1961) 24-51. MR 23:A2201
  • [Brun] M. Brun, Spectral sequences for topological Hochschild homology, Thesis, Aarhus University, 1997.
  • [Brun1] M. Brun, Topological Hochschild homology of $Z/p^n$, J. Pure Appl. Algebra (to appear).
  • [BMMS] R. R. Bruner, J. P. May, J. E. McClure, M. Steinberger, $H_\infty$-ring spectra and their applications, Lecture Notes in Mathematics 1176, Springer-Verlag, 1980. MR 88e:55001
  • [BAG] Buenos Aires Cyclic Homology Group, Cyclic homology of algebras with one generator, K-Theory 5 (1991) 51-68. MR 93b:19002
  • [CLM] F. R. Cohen, T. J. Lada, J. P. May, The Homology of Iterated Loop Spaces, Springer LNM 533, 1976. MR 55:9096
  • [DM] B. Dundas, R. McCarthy, Stable K-theory and topological Hochschild homology, Annals of Math. 140 (1994) 685-689. MR 96e:19005a,b
  • [DM1] B. Dundas, R. McCarthy, Topological Hochschild homology of ring functors and exact categories, J. Pure Appl. Algebra 109 (1996) 231-294. MR 97i:19001
  • [EKMM] A. D. Elmendorf, I. Kriz, M. A. Mandell, J. P. May, Rings, Modules and Algebras in Stable Homotopy Theory, AMS Mathematical Surveys and Monographs vol. 47, 1997. MR 97a:55006
  • [FP] V. Franjou, T. Pirashvili, On Mac Lane cohomology for the ring of integers, Topology 37 (1998) 109-114. MR 98h:19002
  • [HM] L. Hesselholt, I. Madsen, On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1996) 29-101. MR 97i:19002
  • [JP] M. Jibladze, T. Pirashvili, Cohomology of algebraic theories, J. of Algebra 137 (1991) 253-296. MR 92f:18005
  • [K] C. Kassel, La K-theorie stable, Bull. Soc. Math. France 110 (1982) 381-416. MR 84f:18018
  • [L] A. Lindenstrauss, Topological Hochschild homology of extensions of $\mathbf{Z}/p\mathbf{Z}$ by polynomials, and of $\mathbf{Z}[x]/(x^n)$ and $\mathbf{Z}[x]/(x^n-1)$, K-Theory 10, 239-265, 1996. MR 98e:19001
  • [L1] A. Lindenstrauss, The topological Hochschild homology of the Gaussian integers, Amer. J. Math. 118 (1996) 1011-1036. MR 98b:19002
  • [L2] A. Lindenstrauss, A relative spectral sequence for topological Hochschild homology of spectra, J. Pure Appl. Algebra (to appear).
  • [Mac] S. Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, 1971. MR 50:7275
  • [M] I. Madsen, Algebraic K-theory and traces, in Current Developments in Mathematics, 191-321, International Press (1996). MR 98g:19004
  • [M1] I. Madsen, Higher torsion in $SG$ and $BSG$, Math. Z. 143 (1975) 55-80. MR 51:11503
  • [May] J. P. May, $E_\infty$ ring spaces and $E_\infty$ ring spectra, Lecture Notes in Mathematics 577, Springer-Verlag, 1977. MR 58:13008
  • [May1] J. P. May, Simplicial Objects in Algebraic Topology, D. Van Nostrand Company, Inc., 1967. MR 36:5942
  • [PW] T. Pirashvili, F. Waldhausen, Mac Lane homology and topological Hochschild homology, J. Pure Appl. Algebra 82 (1992) 81-98. MR 93k:16016
  • [Q] D. Quillen, Homotopical Algebra, Lecture Notes in Mathematics 43, Springer-Verlag, 1967. MR 36:6480
  • [S] J-P. Serre, Local Fields, Graduate Texts in Mathematics 67, Springer-Verlag, 1979. MR 82e:12016 2

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 19D55, 13D03, 19D50, 55Q52

Retrieve articles in all journals with MSC (2000): 19D55, 13D03, 19D50, 55Q52

Additional Information

Ayelet Lindenstrauss
Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405

Ib Madsen
Affiliation: Department of Mathematics, Aarhus University, DK-8000 Aarhus, Denmark

Received by editor(s): December 18, 1997
Published electronically: February 16, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society