Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The geometry of fixed point varieties
on affine flag manifolds


Author: Daniel S. Sage
Journal: Trans. Amer. Math. Soc. 352 (2000), 2087-2119
MSC (1991): Primary 14L30, 20G25
DOI: https://doi.org/10.1090/S0002-9947-99-02295-3
Published electronically: May 3, 1999
MathSciNet review: 1491876
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a semisimple, simply connected, algebraic group over an algebraically closed field $k$ with Lie algebra $\mathfrak{g}$. We study the spaces of parahoric subalgebras of a given type containing a fixed nil-elliptic element of $\mathfrak{g}\otimes k((\pi))$, i.e. fixed point varieties on affine flag manifolds. We define a natural class of $k^*$-actions on affine flag manifolds, generalizing actions introduced by Lusztig and Smelt. We formulate a condition on a pair $(N,f)$ consisting of $N\in \mathfrak{g}\otimes k((\pi))$ and a $k^*$-action $f$ of the specified type which guarantees that $f$ induces an action on the variety of parahoric subalgebras containing $N$.

For the special linear and symplectic groups, we characterize all regular semisimple and nil-elliptic conjugacy classes containing a representative whose fixed point variety admits such an action. We then use these actions to find simple formulas for the Euler characteristics of those varieties for which the $k^*$-fixed points are finite. We also obtain a combinatorial description of the Euler characteristics of the spaces of parabolic subalgebras containing a given element of certain nilpotent conjugacy classes of $\mathfrak{g}$.


References [Enhancements On Off] (What's this?)

  • [B-B1] A. Bialynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99-103. MR 47:1816
  • [B-B2] A. Bialynicki-Birula, Some theorems on actions of algebraic groups, Annals of Math. 98 (1973), 480-497. MR 51:3186
  • [B-B3] A. Bialynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bulletin de L'Académie Polonaise des sciences 24 (1976), 667-674. MR 56:12020
  • [Bo] A. Borel, Linear algebraic groups, Graduate Texts in Math. 126, Springer-Verlag, Berlin, 1991. MR 92d:20001
  • [B1] N. Bourbaki, Algèbre, Chap. IX, Hermann, Paris, 1959.
  • [B2] N. Bourbaki, Algebra II, Chapters 4-7, Springer-Verlag, Berlin, 1990. MR 91h:00003
  • [KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), 129-168. MR 89m:14025
  • [LS] G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull. London Math. Soc. 23 (1991), 213-218. MR 93e:14065
  • [R] J. Riordan, Combinatorial identities, Robert E. Krieger Publishing Company, Huntington, New York, 1979. MR 80k:05001
  • [S] D. S. Sage, The geometry of fixed point varieties on affine flag manifolds, Ph.D. thesis, University of Chicago, 1995.
  • [S1] J. -P. Serre, Corps locaux, Hermann, Paris, 1962. MR 27:133
  • [S2] J. -P. Serre, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin, fourth ed., 1973.
  • [Sp] N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 191-217. MR 90k:20069
  • [SS] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math. 131, Springer-Verlag, Berlin, 1970, pp. 167-266. MR 42:3091
  • [St] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49-80. MR 31:4788

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14L30, 20G25

Retrieve articles in all journals with MSC (1991): 14L30, 20G25


Additional Information

Daniel S. Sage
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Address at time of publication: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Email: sage@ias.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02295-3
Keywords: Fixed point varieties on affine flag manifolds, Iwahori subalgebras, parahoric subalgebras, lattices
Received by editor(s): November 1, 1997
Published electronically: May 3, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society