Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The geometry of fixed point varieties
on affine flag manifolds

Author: Daniel S. Sage
Journal: Trans. Amer. Math. Soc. 352 (2000), 2087-2119
MSC (1991): Primary 14L30, 20G25
Published electronically: May 3, 1999
MathSciNet review: 1491876
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a semisimple, simply connected, algebraic group over an algebraically closed field $k$ with Lie algebra $\mathfrak{g}$. We study the spaces of parahoric subalgebras of a given type containing a fixed nil-elliptic element of $\mathfrak{g}\otimes k((\pi))$, i.e. fixed point varieties on affine flag manifolds. We define a natural class of $k^*$-actions on affine flag manifolds, generalizing actions introduced by Lusztig and Smelt. We formulate a condition on a pair $(N,f)$ consisting of $N\in \mathfrak{g}\otimes k((\pi))$ and a $k^*$-action $f$ of the specified type which guarantees that $f$ induces an action on the variety of parahoric subalgebras containing $N$.

For the special linear and symplectic groups, we characterize all regular semisimple and nil-elliptic conjugacy classes containing a representative whose fixed point variety admits such an action. We then use these actions to find simple formulas for the Euler characteristics of those varieties for which the $k^*$-fixed points are finite. We also obtain a combinatorial description of the Euler characteristics of the spaces of parabolic subalgebras containing a given element of certain nilpotent conjugacy classes of $\mathfrak{g}$.

References [Enhancements On Off] (What's this?)

  • [B-B1] A. Białynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99–103. MR 0313261
  • [B-B2] A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480–497. MR 0366940
  • [B-B3] A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667–674 (English, with Russian summary). MR 0453766
  • [Bo] Armand Borel, Linear algebraic groups, 2nd ed., Graduate Texts in Mathematics, vol. 126, Springer-Verlag, New York, 1991. MR 1102012
  • [B1] N. Bourbaki, Algèbre, Chap. IX, Hermann, Paris, 1959.
  • [B2] N. Bourbaki, Algebra. II. Chapters 4–7, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1990. Translated from the French by P. M. Cohn and J. Howie. MR 1080964
  • [KL] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, 10.1007/BF02787119
  • [LS] G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull. London Math. Soc. 23 (1991), no. 3, 213–218. MR 1123328, 10.1112/blms/23.3.213
  • [R] John Riordan, Combinatorial identities, Robert E. Krieger Publishing Co., Huntington, N.Y., 1979. Reprint of the 1968 original. MR 554488
  • [S] D. S. Sage, The geometry of fixed point varieties on affine flag manifolds, Ph.D. thesis, University of Chicago, 1995.
  • [S1] Jean-Pierre Serre, Corps locaux, Publications de l’Institut de Mathématique de l’Université de Nancago, VIII, Actualités Sci. Indust., No. 1296. Hermann, Paris, 1962 (French). MR 0150130
  • [S2] J. -P. Serre, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer-Verlag, Berlin, fourth ed., 1973.
  • [Sp] N. Spaltenstein, Polynomials over local fields, nilpotent orbits and conjugacy classes in Weyl groups, Astérisque 168 (1988), 10–11, 191–217. Orbites unipotentes et représentations, I. MR 1021497
  • [SS] T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Mathematics, Vol. 131, Springer, Berlin, 1970, pp. 167–266. MR 0268192
  • [St] Robert Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49–80. MR 0180554

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14L30, 20G25

Retrieve articles in all journals with MSC (1991): 14L30, 20G25

Additional Information

Daniel S. Sage
Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
Address at time of publication: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540

Keywords: Fixed point varieties on affine flag manifolds, Iwahori subalgebras, parahoric subalgebras, lattices
Received by editor(s): November 1, 1997
Published electronically: May 3, 1999
Article copyright: © Copyright 2000 American Mathematical Society