Coupled contact systems and rigidity of maximal dimensional variations of Hodge structure

Author:
Richárd Mayer

Journal:
Trans. Amer. Math. Soc. **352** (2000), 2121-2144

MSC (1991):
Primary 14C30

Published electronically:
July 26, 1999

MathSciNet review:
1624194

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we prove that locally Griffiths' horizontal distribution on the period domain is given by a generalized version of the familiar contact differential system. As a consequence of this description we obtain strong local rigidity properties of maximal dimensional variations of Hodge structure. For example, we prove that if the weight is odd (greater than one) then there is a unique germ of maximal dimensional variation of Hodge structure through every point of the period domain. Similar results hold if the weight is even with the exception of one case.

**[A]**V. I. Arnold,*Mathematical Methods of Classical Mechanics,*Graduate Text in Mathematics, Springer-Verlag, 1978. MR**57:14033h****[B]**R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths,*Exterior differential systems*, Mathematical Sciences Research Institute Publications, vol. 18, Springer-Verlag, New York, 1991. MR**1083148****[C1]**James A. Carlson,*Bounds on the dimension of variations of Hodge structure*, Trans. Amer. Math. Soc.**294**(1986), no. 1, 45–64. MR**819934**, 10.1090/S0002-9947-1986-0819934-6**[C2]**James A. Carlson,*Hypersurface variations are maximal. II*, Trans. Amer. Math. Soc.**323**(1991), no. 1, 177–196. MR**978385**, 10.1090/S0002-9947-1991-0978385-6**[C-D]**James A. Carlson and Ron Donagi,*Hypersurface variations are maximal. I*, Invent. Math.**89**(1987), no. 2, 371–374. MR**894385**, 10.1007/BF01389084**[C-S]**James A. Carlson and Carlos Simpson,*Shimura varieties of weight two Hodge structures*, Hodge theory (Sant Cugat, 1985) Lecture Notes in Math., vol. 1246, Springer, Berlin, 1987, pp. 1–15. MR**894038**, 10.1007/BFb0077525**[C-K-T]**James A. Carlson, Aznif Kasparian, and Domingo Toledo,*Variations of Hodge structure of maximal dimension*, Duke Math. J.**58**(1989), no. 3, 669–694. MR**1016441**, 10.1215/S0012-7094-89-05832-8**[G1]**Phillip A. Griffiths,*Periods of integrals on algebraic manifolds. I. Construction and properties of the modular varieties*, Amer. J. Math.**90**(1968), 568–626. MR**0229641**

Phillip A. Griffiths,*Periods of integrals on algebraic manifolds. II. Local study of the period mapping*, Amer. J. Math.**90**(1968), 805–865. MR**0233825****[G2]**Phillip Griffiths (ed.),*Topics in transcendental algebraic geometry*, Annals of Mathematics Studies, vol. 106, Princeton University Press, Princeton, NJ, 1984. MR**756842****[S]**Wilfried Schmid,*Variation of Hodge structure: the singularities of the period mapping*, Invent. Math.**22**(1973), 211–319. MR**0382272****[W]**Frank W. Warner,*Foundations of differentiable manifolds and Lie groups*, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York-Berlin, 1983. Corrected reprint of the 1971 edition. MR**722297**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
14C30

Retrieve articles in all journals with MSC (1991): 14C30

Additional Information

**Richárd Mayer**

Affiliation:
Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01003

Email:
mayer@math.umass.edu

DOI:
https://doi.org/10.1090/S0002-9947-99-02395-8

Received by editor(s):
December 5, 1997

Published electronically:
July 26, 1999

Article copyright:
© Copyright 2000
American Mathematical Society