Relative completions of linear groups over and
Author:
Kevin P. Knudson
Journal:
Trans. Amer. Math. Soc. 352 (2000), 22052216
MSC (1991):
Primary 55P60, 20G35, 20H05; Secondary 20G10, 20F14
Published electronically:
July 26, 1999
MathSciNet review:
1641103
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We compute the completion of the groups and relative to the obvious homomorphisms to ; this is a generalization of the classical Malcev completion. We also make partial computations of the rational second cohomology of these groups.
 1.
Armand
Borel, Topology of Lie groups and
characteristic classes, Bull. Amer. Math.
Soc. 61 (1955),
397–432. MR 0072426
(17,282b), http://dx.doi.org/10.1090/S000299041955099361
 2.
Armand
Borel, Stable real cohomology of arithmetic groups. II,
Manifolds and Lie groups (Notre Dame, Ind., 1980) Progr. Math.,
vol. 14, Birkhäuser, Boston, Mass., 1981, pp. 21–55.
MR 642850
(83h:22023)
 3.
A.
K. Bousfield, Homological localization towers for groups and
Πmodules, Mem. Amer. Math. Soc. 10 (1977),
no. 186, vii+68. MR 0447375
(56 #5688)
 4.
Fritz
Grunewald, Jens
Mennicke, and Leonid
Vaserstein, On the groups
𝑆𝐿₂(𝑍[𝑥]) and
𝑆𝐿₂(𝑘[𝑥,𝑦]), Israel J.
Math. 86 (1994), no. 13, 157–193. MR 1276133
(95h:20061), http://dx.doi.org/10.1007/BF02773676
 5.
Richard
M. Hain, Algebraic cycles and extensions of variations of mixed
Hodge structure, Complex geometry and Lie theory (Sundance, UT, 1989)
Proc. Sympos. Pure Math., vol. 53, Amer. Math. Soc., Providence, RI,
1991, pp. 175–221. MR 1141202
(92j:14008), http://dx.doi.org/10.1090/pspum/053/1141202
 6.
Richard
M. Hain, Completions of mapping class groups and the cycle
𝐶𝐶⁻, Mapping class groups and moduli spaces of
Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) Contemp. Math.,
vol. 150, Amer. Math. Soc., Providence, RI, 1993,
pp. 75–105. MR 1234261
(95e:14018), http://dx.doi.org/10.1090/conm/150/01287
 7.
Richard
Hain, Infinitesimal presentations of the
Torelli groups, J. Amer. Math. Soc.
10 (1997), no. 3,
597–651. MR 1431828
(97k:14024), http://dx.doi.org/10.1090/S089403479700235X
 8.
Wilberd
van der Kallen, Homology stability for linear groups, Invent.
Math. 60 (1980), no. 3, 269–295. MR 586429
(82c:18011), http://dx.doi.org/10.1007/BF01390018
 9.
A. Knapp, Lie groups, Lie algebras, and cohomology, Princeton University Press, Princeton, NJ, 1988. MR:89j:22034
 10.
K. Knudson, The homology of special linear groups over polynomial rings, Ann. Sci. Ecole Norm. Sup. (4) 30 (1997), 385416.
 11.
Alexander
Lubotzky and Andy
R. Magid, Cohomology, Poincaré series, and group algebras of
unipotent groups, Amer. J. Math. 107 (1985),
no. 3, 531–553. MR 789654
(86h:20063), http://dx.doi.org/10.2307/2374368
 12.
Daniel
G. Quillen, On the associated graded ring of a group ring, J.
Algebra 10 (1968), 411–418. MR 0231919
(38 #245)
 13.
Daniel
Quillen, Rational homotopy theory, Ann. of Math. (2)
90 (1969), 205–295. MR 0258031
(41 #2678)
 14.
M.
S. Raghunathan, Cohomology of arithmetic subgroups of algebraic
groups. I, II, Ann. of Math. (2) 86 (1967), 409424; ibid. (2)
87 (1967), 279–304. MR 0227313
(37 #2898)
 15.
A.
A. Suslin, The structure of the special linear group over rings of
polynomials, Izv. Akad. Nauk SSSR Ser. Mat. 41
(1977), no. 2, 235–252, 477 (Russian). MR 0472792
(57 #12482)
 1.
 A. Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397432. MR 17:282b
 2.
 A. Borel, Stable real cohomology of arithmetic groups. II, in Manifolds and Lie groups, Progress in Mathematics 14, Birkhäuser, Boston (1981), 2155. MR 83h:22023
 3.
 A. Bousfield, Homological localization towers for groups and modules, Mem. Amer. Math. Soc. 10 no. 186 (1977). MR 56:5688
 4.
 F. Grunewald, J. Mennicke and L. Vaserstein, On the groups and , Israel J. Math. 86 (1994), 157193. MR 95h:20061
 5.
 R. Hain, Algebraic cycles and extensions of variations of mixed Hodge structure, in Complex geometry and Lie theory, Proc. Symp. Pure Math. 53 (1991), 175221. MR 92j:14008
 6.
 R. Hain, Completions of mapping class groups and the cycle , in Mapping class groups and moduli spaces of Riemann surfaces, Contemp. Math. 150 (1993), 75105. MR 95e:14018
 7.
 R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597651. MR 97k:14024
 8.
 W. van der Kallen, Homology stability for linear groups, Invent. Math. 60 (1980), 269295. MR 82c:18011
 9.
 A. Knapp, Lie groups, Lie algebras, and cohomology, Princeton University Press, Princeton, NJ, 1988. MR:89j:22034
 10.
 K. Knudson, The homology of special linear groups over polynomial rings, Ann. Sci. Ecole Norm. Sup. (4) 30 (1997), 385416.
 11.
 A. Lubotzky, A. Magid, Cohomology, Poincaré series, and group algebras of unipotent groups, Amer. J. Math. 107 (1985), 531553. MR 86h:20063
 12.
 D. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411418. MR 38:245
 13.
 D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205295. MR 41:2678
 14.
 M. Raghunathan, Cohomology of arithmetic subgroups of algebraic groups. I, Ann. of Math. 86 (1967), 409424. MR 37:2898
 15.
 A. Suslin, On the structure of special linear groups over polynomial rings, Math. USSR Izv. 11 (1977), 221238. MR 57:12482
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
55P60,
20G35,
20H05,
20G10,
20F14
Retrieve articles in all journals
with MSC (1991):
55P60,
20G35,
20H05,
20G10,
20F14
Additional Information
Kevin P. Knudson
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Address at time of publication:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202
DOI:
http://dx.doi.org/10.1090/S0002994799024332
PII:
S 00029947(99)024332
Received by editor(s):
January 20, 1998
Published electronically:
July 26, 1999
Additional Notes:
Supported by an NSF Postdoctoral Fellowship, grant no. DMS9627503
Article copyright:
© Copyright 2000
American Mathematical Society
