On syzygies of abelian varieties

Author:
Elena Rubei

Journal:
Trans. Amer. Math. Soc. **352** (2000), 2569-2579

MSC (2000):
Primary 14K05

DOI:
https://doi.org/10.1090/S0002-9947-00-02398-9

Published electronically:
March 7, 2000

MathSciNet review:
1624206

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper we prove the following result: Let be a complex torus and a normally generated line bundle on ; then, for every , the line bundle satisfies Property of Green-Lazarsfeld.

**[E-L]**L. Ein R. Lazarsfeld,*Syzygies and Koszul cohomology of smooth projective varieties of arbitrary dimension*, Invent. Math. 111 (1993) no. 1, 51-67. MR**93m:13006****[Gr1]**M. Green,*Koszul cohomology and the geometry of projective varieties I, II*, J. Differential Geom. 19 (1984), 125-171; J. Differential Geom. 20 (1984), 279-289. MR**85e:14022**; MR**86j:14011****[Gr2]**M. Green,*Koszul cohomology and geometry*, in: (M. Cornalba et al. eds), Lectures on Riemann Surfaces, World Scientific Press (1989). MR**91k:14012****[G-L]**M. Green and R. Lazarsfeld,*On the projective normality of complete linear series on an algebraic curve*, Invent. Math. 83 (1986), 73-90. MR**87g:14022****[Ha]**R. Hartshorne,*Algebraic Geometry*, Grad. Texts Math. 52, Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR**57:3116****[Ke]**G. Kempf,*Projective cooridinate rings of abelian varieties*, in: Algebraic Analysis, Geometry and Number Theory, edited by I.J. Igusa, The John Hopkins Press (1989), 225-236. MR**98m:14047****[Ko]**S. Koizumi,*Theta relations and projective normality of abelian varieties*, Amer. J. Math. 98 (1976), 865-889. MR**58:702****[L-B]**H. Lange and Ch. Birkenhake,*Complex Abelian Varieties*, Springer-Verlag, 1992. MR**94j:14001****[Laz1]**R. Lazarsfeld,*Projectivité normale des surfaces abéliannes*, redigé par O. Debarre. prépublication No. 14 Europroj - C.I.M.P.A., Nice, 1990.**[Laz2]**R. Lazarsfeld,*A sampling of vector bundle techniques in the study of linear series*, in: (M. Cornalba et al. (eds), Lectures on Riemann Surfaces, World Scientific Press (1989), 500-559. MR**92f:14006****[Mum1]**D. Mumford,*Varieties defined by quadratic equations*in: Questioni sulle varietà algebriche, Corsi C.I.M.E., Edizioni Cremonese, Roma, (1969), 29-100. MR**44:209****[Mum2]**D. Mumford,*On equations defining abelian varieties*, Invent. Math. 1 (1966), 287-354. MR**34:4269****[Re]**I. Reider,*Vector bundles of rank**and linear systems on algebraic surfaces*, Ann. of Math., 127 (1988), 309-316. MR**89e:14038****[Se]**T. Sekiguchi,*On normal generation by a line bundle on an abelian variety*, Proc. Japan Acad. 54, Ser A (1978), 185-188. MR**80c:14026**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14K05

Retrieve articles in all journals with MSC (2000): 14K05

Additional Information

**Elena Rubei**

Affiliation:
Dipartimento di Matematica, Università di Pisa, via F. Buonarroti 2, Pisa (PI) c.a.p. 56127, Italia

Email:
rubei@mail.dm.unipi.it

DOI:
https://doi.org/10.1090/S0002-9947-00-02398-9

Keywords:
Abelian varieties,
syzygies

Received by editor(s):
November 30, 1997

Received by editor(s) in revised form:
March 29, 1998

Published electronically:
March 7, 2000

Additional Notes:
This research was carried through in the realm of the AGE Project HCMERBCHRXCT940557 and of the ex-40 MURST Program “Geometria algebrica".

Article copyright:
© Copyright 2000
American Mathematical Society