Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Problème de Dirichlet pour une équation de Monge-Ampère réelle elliptique dégénérée en dimension $n$


Author: Amel Atallah
Journal: Trans. Amer. Math. Soc. 352 (2000), 2701-2721
MSC (1991): Primary 35J25, 35J70, 35Q99
DOI: https://doi.org/10.1090/S0002-9947-00-02581-2
Published electronically: February 28, 2000
MathSciNet review: 1707190
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract:

RÉSUMÉ. On considère dans un ouvert borné $\Omega$ de $\mathbb{R}^n$, à bord régulier, le problème de Dirichlet \begin{equation*}\left\{ \begin{split} & \det u_{ij}=f(x)\text{ dans }\Omega, & u\vert _{\partial \Omega}=\varphi, \end{split}\right.\tag{1} \end{equation*}

$f\in C^{s_*}(\overline\Omega), \varphi\in C^{s_*+2,\alpha}(\Omega)$, $f$est positive et s'annule sur $\Sigma$ un ensemble fini de points de $\Omega$. On démontre alors sous certaines hypothèses sur $\varphi$ et si $\vert\det \varphi_{ij}-f\vert _{C^{s_*}}$ est assez petit, que le problème (1) possède une solution convexe unique $u\in C^{[s_*-3-n/2]}(\overline\Omega)$.

ABSTRACT. We consider in a bounded open set $\Omega$ of $\mathbb{R}^n$, with regular boundary, the Dirichlet problem \begin{equation*}\left\{ \begin{split} & \det u_{ij}=f(x)\text{ in }\Omega, & u\vert _{\partial \Omega}=\varphi, \end{split}\right.\tag{1} \end{equation*}

where $f\in C^{s_*}(\overline\Omega), \varphi\in C^{s_*+2,\alpha}(\Omega)$, $f$is positive and vanishes on $\Sigma$, a finite set of points in $\Omega$. We prove, under some hypothesis on $\varphi$ and if $\vert\det \varphi_{ij}-f\vert _{C^{s_*}}$ is sufficiently small, that the problem (1) has a unique convex solution $u\in C^{[s_*-3-n/2]}(\overline\Omega)$.


References [Enhancements On Off] (What's this?)

  • [A.G] S. Alinhac, P. Gérard: Opérateurs pseudo-différentiels et théorème de Nash-Moser, InterEditions et Editions du CNRS, 1991. MR 93g:35001
  • [A] K. Amano: The Dirichlet problem for degenerate elliptic $2$-dimensional Monge-Ampère equation, Bull. Austral. Math. Soc. 37 (1988), 389-410. MR 89h:35115a
  • [C.N.S.1] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second-order elliptic equations. I. Monge-Ampère equation, Comm. Pure Appl. Math. 37 (1984), 369-402. MR 87f:35096
  • [C.N.S.2] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge-Ampère and uniformly elliptic equations, Comm. Pure Appl. Math. 38 (1985), 209-252. MR 87f:35097
  • [C.N.S.3] L. Caffarelli, L. Nirenberg, J. Spruck: The Dirichlet problem for the degenerate Monge-Ampère equation, Rev. Mat. Iberoamericana 2 (1986), 19-27. MR 87m:35103
  • [E] L. Evans: Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math. 25 (1982), 333-363. MR 83g:35038
  • [G.T] D. Gilbarg, N. S. Trudinger: Elliptic partial differential equations of second order, 2nd ed., Springer-Verlag, Berlin and New York, 1983. MR 86c:35035
  • [H.Z] J. Hong, C. Zuily: Existence of $C^\infty$ local solutions for the Monge-Ampère equation, Invent. Math. 89 (1987), 645-661. MR 88j:35056
  • [Hör] L. Hörmander: On the Nash-Moser implicit function theorem, Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 255-259. MR 87a:58025
  • [K] N. V. Krylov: Boundedly nonhomogeneous elliptic and parabolic equations in a domain, Math. USSR Izv. 22 (1984), 67-97.
  • [L] C. S. Llin, The local isometric embedding in $\mathbb{R}^3$ of two dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom. 21 (1985), 213-230. MR 87m:53073
  • [O.R] O. A. Oleinik, E. V. Radkevich: Second order equations with non negative characteristic form, Plenum Press, New York, 1973. MR 56:16112
  • [T] N. S. Trudinger: Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), 751-769. MR 85b:35016
  • [U] J. I. E. Urbas: Elliptic equations of Monge-Ampère type, Thesis, Australian National University, 1984.
  • [Z] C. Zuily: Sur la régularité des solutions non strictement convexes de l'équation de Monge-Ampère réelle, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), 529-554. MR 91e:35095

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35J25, 35J70, 35Q99

Retrieve articles in all journals with MSC (1991): 35J25, 35J70, 35Q99


Additional Information

Amel Atallah
Affiliation: Université de Paris-Sud, Département de Mathématiques, Bât. 425, 91405 Orsay, Cedex, France
Address at time of publication: Département de Mathématiques, Faculté des Sciences de Tunis, Campus Universitaire le Belvedere, 1060 Tunis, Tunisie
Email: sami.baraket@fst.rnu.tn

DOI: https://doi.org/10.1090/S0002-9947-00-02581-2
Keywords: Equation de Monge-Ampere, probleme de Dirichlet, equation elliptique degeneree
Received by editor(s): April 17, 1995
Published electronically: February 28, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society