Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Macaulayfication of Noetherian schemes


Author: Takesi Kawasaki
Journal: Trans. Amer. Math. Soc. 352 (2000), 2517-2552
MSC (1991): Primary 14M05; Secondary 13H10, 14B05, 14E15
DOI: https://doi.org/10.1090/S0002-9947-00-02603-9
Published electronically: February 29, 2000
MathSciNet review: 1707481
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

The Macaulayfication of a Noetherian scheme $X$ is a birational proper morphism from a Cohen-Macaulay scheme to $X$. In 1978 Faltings gave a Macaulayfication of a quasi-projective scheme if its non-Cohen-Macaulay locus is of dimension $0$ or $1$. In the present article, we construct a Macaulayfication of Noetherian schemes without any assumption on the non-Cohen-Macaulay locus. Of course, a desingularization is a Macaulayfication and, in 1964, Hironaka already gave a desingularization of an algebraic variety over a field of characteristic $0$. Our method, however, to construct a Macaulayfication is independent of the characteristic.


References [Enhancements On Off] (What's this?)

  • 1. Yoichi Aoyama and Shiro Goto, Some special cases of a conjecture of Sharp, J. Math. Kyoto Univ. 26 (1986), 613-634. MR 88h:13013
  • 2. -, A conjecture of Sharp--the case of local rings with $\dim \operatorname{non-CM}\leq 1$ or $\dim \leq 5$, Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata, Kinokuniya, 1988, pp. 27-34.MR 90b:13018
  • 3. Dave Bayer and Michael Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra, 1982-1994, Source and object code available for Unix and Macintosh computers. Contact the authors, or download from math.harvard.edu via anonymous ftp.
  • 4. Markus Brodmann, Kohomologische Eigenschaften on Audblasungen an Lokal Vollständgen Durchschnitten, 1980, Habilitationsschrift.
  • 5. -, Two types of birational models, Comment. Math. Helv. 58 (1983), 388-415. MR 85g:14061
  • 6. -, A few remarks on blowing-up and connectedness, J. Reine Ang199ew. Math. 370 (1986), 52-60. MR 87j:14014
  • 7. Nguyen Tu Cuong, P-standard systems of parameters and p-standard ideals in local rings, Acta Math. Vietnamica 20 (1995), 145-161.
  • 8. Gerd Faltings, Über die Annulatoren lokaler Kohomogiegruppen, Arch. Math. (Basel) 30 (1978), 473-476. MR 58:22058
  • 9. -, Über Macaualyfizierung, Math. Ann. 238 (1978), 175-192. MR 80c:14030
  • 10. Shiro Goto, On the Cohen-Macaulayfication of certain Buchsbaum rings, Nagoya Math. J. 80 (1980), 107-116. MR 81m:13023
  • 11. -, Blowing-up of Buchsbaum rings, Proceedings, Durham symposium on Commutative Algebra, London Math. Soc. Lect. Notes, vol. 72, Cambridge Univ. Press, 1982, pp. 140-162.MR 84h:13032
  • 12. Shiro Goto and Yasuhiro Shimoda, On Rees algebras over Buchsbaum rings, J. Math. Kyoto Univ. 20 (1980), 691-708. MR 82c:13027
  • 13. Shiro Goto, Naoyoshi Suzuki, and Kei-ichi Watanabe, On affine semigroup rings, Japan. J. Math. (N.S.) 2 (1976), 1-12. MR 56:8553
  • 14. Shiro Goto and Kei-ichi Watanabe, On graded rings, I, J. Math. Soc. Japan 30 (1978), 179-213. MR 81m:13021
  • 15. Shiro Goto and Kikumichi Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, preprint.
  • 16. A. Grothendieck, Éléments de Géométrie Algébrique II, Inst. Hautes Études Sci. Publ. Math., vol. 8, Presses Universitaires de France, 1961. MR 29:1208
  • 17. Robin Hartshorne, Residue and duality, Lecture Notes in Math., vol. 20, Springer-Verlag, Berlin, Heidelberg, New York, 1966. MR 36:5145
  • 18. -, Algebraic geometry, Graduate Texts in Mathematics, vol. 52, Springer, Berlin, Heidelberg, New-York, 1977. MR 57:3116
  • 19. Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0, Ann. of Math. (2) 79 (1964), 109-326. MR 33:7333
  • 20. Craig Huneke, The theory of $d$-sequences and powers of ideals, Adv. in Math. 46 (1982), 249-279. MR 84g:13021
  • 21. Takesi Kawasaki, On Macaulayfication of certain quasi-projective schemes, J. Math. Soc. Japan 50 (1998), 969-991. CMP 99:01
  • 22. Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Math., vol. 8, Cambridge University Press, 1986. MR 90i:13001
  • 23. D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge. Phil. Soc. 50 (1954), 145-158. MR 15:596a
  • 24. Tetsushi Ogoma, Existence of dualizing complexes, J. Math. Kyoto Univ. 24 (1984), 27-48. MR 85j:13028
  • 25. Idun Reiten, The converse to a theorem of Sharp in Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417-420. MR 45:5128
  • 26. Peter Schenzel, Dualizing complexes and system of parameters, J. Algebra 58 (1979), 495-501.MR 80f:14025
  • 27. -, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc. 91 (1982), 345-350.MR 83j:13008
  • 28. -, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum ringe, Lecture Notes in Math., vol. 907, Springer, Berlin, Heidelberg, New York, 1982.MR 83i:13013
  • 29. -, Standard system of parameters and their blowing-up rings, J. Reine Angew. Math. 344 (1983), 201-220. MR 84m:13025
  • 30. Rodney Y. Sharp, Necessary conditions for the existence of dualizing complexes in commutative algebra, Sém. Algèbre P. Dubreil 1977/78, Lecture Notes in Mathematics, vol. 740, Springer-Verlag, 1979, pp. 213-229. MR 81d:13013
  • 31. Giuseppe Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra 42 (1976), 537-548. MR 54:10240

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14M05, 13H10, 14B05, 14E15

Retrieve articles in all journals with MSC (1991): 14M05, 13H10, 14B05, 14E15


Additional Information

Takesi Kawasaki
Affiliation: Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi Minami-Ohsawa 1-1, Tokyo 192-0397, Japan
Email: kawasaki@comp.metro-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-00-02603-9
Keywords: Blowing-up, Cohen-Macaulay scheme, desingularization, dualizing complex, Macaulayfication
Received by editor(s): November 11, 1996
Published electronically: February 29, 2000
Additional Notes: The author is supported by Grant-in-Aid for Co-Operative Research.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society