A new result on the Pompeiu problem
Author:
R. Dalmasso
Journal:
Trans. Amer. Math. Soc. 352 (2000), 27232736
MSC (1991):
Primary 35N05
Published electronically:
October 15, 1999
MathSciNet review:
1694284
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A nonempty bounded open set () is said to have the Pompeiu property if and only if the only continuous function on for which the integral of over is zero for all rigid motions of is . We consider a nonempty bounded open set with Lipschitz boundary and we assume that the complement of is connected. We show that the failure of the Pompeiu property for implies some geometric conditions. Using these conditions we prove that a special kind of solid tori in , , has the Pompeiu property. So far the result was proved only for solid tori in . We also examine the case of planar domains. Finally we extend the example of solid tori to domains in bounded by hypersurfaces of revolution.
 1.
Carlos
Alberto Berenstein, An inverse spectral theorem and its relation to
the Pompeiu problem, J. Analyse Math. 37 (1980),
128–144. MR
583635 (82b:35031), http://dx.doi.org/10.1007/BF02797683
 2.
C. A. Berenstein and D. Khavinson, Do solid tori have the Pompeiu property?, Expo. Math. 15 (1997), 8793. CMP 97:09
 3.
Leon
Brown, Bertram
M. Schreiber, and B.
Alan Taylor, Spectral synthesis and the Pompeiu problem, Ann.
Inst. Fourier (Grenoble) 23 (1973), no. 3,
125–154 (English, with French summary). MR 0352492
(50 #4979)
 4.
Peter
Ebenfelt, Singularities of the solution to a certain Cauchy problem
and an application to the Pompeiu problem, Duke Math. J.
71 (1993), no. 1, 119–142. MR 1230288
(94k:35006), http://dx.doi.org/10.1215/S0012709493071062
 5.
Peter
Ebenfelt, Some results on the Pompeiu problem, Ann. Acad. Sci.
Fenn. Ser. A I Math. 18 (1993), no. 2, 323–341.
MR
1234737 (95b:30061)
 6.
Peter
Ebenfelt, Propagation of singularities from singular and infinite
points in certain complexanalytic Cauchy problems and an application to
the Pompeiu problem, Duke Math. J. 73 (1994),
no. 3, 561–582. MR 1262927
(95c:35012), http://dx.doi.org/10.1215/S0012709494073237
 7.
Harley
Flanders, A proof of Minkowski’s inequality for convex
curves, Amer. Math. Monthly 75 (1968), 581–593.
MR
0233287 (38 #1609)
 8.
Nicola
Garofalo and Fausto
Segàla, New results on the Pompeiu
problem, Trans. Amer. Math. Soc.
325 (1991), no. 1,
273–286. MR
994165 (91h:35322), http://dx.doi.org/10.1090/S0002994719910994165X
 9.
Nicola
Garofalo and Fausto
Segàla, Another step toward the solution of the Pompeiu
problem in the plane, Comm. Partial Differential Equations
18 (1993), no. 34, 491–503. MR 1214869
(94j:30039), http://dx.doi.org/10.1080/03605309308820938
 10.
Nicola
Garofalo and Fausto
Segàla, Univalent functions and the Pompeiu
problem, Trans. Amer. Math. Soc.
346 (1994), no. 1,
137–146. MR 1250819
(95b:30062), http://dx.doi.org/10.1090/S00029947199412508194
 11.
Gunnar
Johnsson, The Cauchy problem in
𝐶^{𝑁} for linear second order partial differential
equations with data on a quadric surface, Trans. Amer. Math. Soc. 344 (1994), no. 1, 1–48. MR 1242782
(94m:35008), http://dx.doi.org/10.1090/S00029947199412427827
 12.
Patrizia
Pucci and James
Serrin, A general variational identity, Indiana Univ. Math. J.
35 (1986), no. 3, 681–703. MR 855181
(88b:35072), http://dx.doi.org/10.1512/iumj.1986.35.35036
 13.
Stephen
A. Williams, A partial solution of the Pompeiu problem, Math.
Ann. 223 (1976), no. 2, 183–190. MR 0414904
(54 #2996)
 14.
Stephen
A. Williams, Analyticity of the boundary for Lipschitz domains
without the Pompeiu property, Indiana Univ. Math. J.
30 (1981), no. 3, 357–369. MR 611225
(82j:31009), http://dx.doi.org/10.1512/iumj.1981.30.30028
 15.
Shing
Tung Yau, Problem section, Seminar on Differential Geometry,
Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J.,
1982, pp. 669–706. MR 645762
(83e:53029)
 16.
Lawrence
Zalcman, Offbeat integral geometry, Amer. Math. Monthly
87 (1980), no. 3, 161–175. MR 562919
(81b:53046), http://dx.doi.org/10.2307/2321600
 17.
L.
Zalcman, A bibliographic survey of the Pompeiu problem,
Approximation by solutions of partial differential equations (Hanstholm,
1991) NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 365, Kluwer
Acad. Publ., Dordrecht, 1992, pp. 185–194. MR 1168719
(93e:26001)
 1.
 C. A. Berenstein, An inverse spectral theorem and its relation to the Pompeiu problem, J. Anal. Math. 37 (1980), 128144. MR 82b:35031
 2.
 C. A. Berenstein and D. Khavinson, Do solid tori have the Pompeiu property?, Expo. Math. 15 (1997), 8793. CMP 97:09
 3.
 L. Brown, B. M. Schreiber and B. A. Taylor, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier 23 (1973), 125154. MR 50:4979
 4.
 P. Ebenfelt, Singularities of solutions to a certain Cauchy problem and an application to the Pompeiu problem, Duke Math. J. 71 (1993), 119142. MR 94k:35006
 5.
 P. Ebenfelt, Some results on the Pompeiu problem, Ann. Acad. Sci. Fennicae 18 (1993), 323341. MR 95b:30061
 6.
 P. Ebenfelt, Propagation of singularities from singular and infinite points in certain analytic Cauchy problems and an application to the Pompeiu problem, Duke Math. J. 73 (1994), 561582. MR 95c:35012
 7.
 H. Flanders, A proof of Minkowski's inequality for convex curves, Amer. Math. Monthly 75 (1968), 581593. MR 38:1609
 8.
 N. Garofalo and F. Segala, New results on the Pompeiu problem, Trans. Amer. Math. Soc. 3251 (1991), 273286. MR 91h:35322
 9.
 N. Garofalo and F. Segala, Another step toward the solution of the Pompeiu problem in the plane, Commun. in Partial Differential Equations 18 (1993), 491503. MR 94j:30039
 10.
 N. Garofalo and F. Segala, Univalent functions and the Pompeiu problem, Trans. Amer. Math. Soc. 346 (1994), 137146. MR 95b:30062
 11.
 G. Johnsson, The Cauchy problem in for linear second order partial differential equations with data on a quadric surface, Trans. Amer. Math. Soc. 344 (1994), 148. MR 94m:35008
 12.
 P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681703. MR 88b:35072
 13.
 S. A. Williams, A partial solution to the Pompeiu problem, Math. Ann. 2232 (1976), 183190. MR 54:2996
 14.
 S. A. Williams, Analycity of the boundary for Lipschitz domains without the Pompeiu property, Indiana Univ. Math. J. 30 (1981), 357369. MR 82j:31009
 15.
 S. T. Yau, Problem Section, in Seminar on Differential Geometry, edited by S. T. Yau, Annals of Math. Studies, Princeton, N.J., 1982. MR 83e:53029
 16.
 L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161175. MR 81b:53046
 17.
 L. Zalcman, A bibliographic survey of the Pompeiu problem, in Approximation by solutions of partial differential equations, B. Fuglede et al. (eds.), Kluwer Acad. Publ., 1992, 185194. MR 93e:26001
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
35N05
Retrieve articles in all journals
with MSC (1991):
35N05
Additional Information
R. Dalmasso
Affiliation:
Laboratoire LMCIMAG, Equipe EDP, BP 53, F38041 Grenoble Cedex 9, France
Email:
robert.dalmasso@imag.fr
DOI:
http://dx.doi.org/10.1090/S0002994799025337
PII:
S 00029947(99)025337
Keywords:
Pompeiu problem,
Schiffer's conjecture
Received by editor(s):
June 6, 1997
Received by editor(s) in revised form:
January 14, 1998
Published electronically:
October 15, 1999
Article copyright:
© Copyright 2000
American Mathematical Society
