A filtration of spectra arising from families of subgroups of symmetric groups
Author:
Kathryn Lesh
Journal:
Trans. Amer. Math. Soc. 352 (2000), 32113237
MSC (2000):
Primary 55P47; Secondary 55N20, 55P42
Published electronically:
March 15, 2000
MathSciNet review:
1707701
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a family of subgroups of which is closed under taking subgroups and conjugates. Such a family has a classifying space, , and we showed in an earlier paper that a compatible choice of for each gives a simplicial monoid , which group completes to an infinite loop space. In this paper we define a filtration of the associated spectrum whose filtration quotients, given an extra condition on the families, can be identified in terms of the classifying spaces of the families of subgroups that were chosen. This gives a way to go from group theoretic data about the families to homotopy theoretic information about the associated spectrum. We calculate two examples. The first is related to elementary abelian groups, and the second gives a new expression for the desuspension of as a suspension spectrum.
 [A]
John
Frank Adams, Infinite loop spaces, Annals of Mathematics
Studies, vol. 90, Princeton University Press, Princeton, N.J.;
University of Tokyo Press, Tokyo, 1978. MR 505692
(80d:55001)
 [BE]
M.
G. Barratt and Peter
J. Eccles, Γ⁺structures. I. A free group functor for
stable homotopy theory, Topology 13 (1974),
25–45. MR
0348737 (50 #1234a)
 [BF]
A.
K. Bousfield and E.
M. Friedlander, Homotopy theory of Γspaces, spectra, and
bisimplicial sets, Geometric applications of homotopy theory (Proc.
Conf., Evanston, Ill., 1977), II, Lecture Notes in Math., vol. 658,
Springer, Berlin, 1978, pp. 80–130. MR 513569
(80e:55021)
 [BK]
A.
K. Bousfield and D.
M. Kan, Homotopy limits, completions and localizations,
Lecture Notes in Mathematics, Vol. 304, SpringerVerlag, BerlinNew York,
1972. MR
0365573 (51 #1825)
 [E]
A.
D. Elmendorf, Systems of fixed point sets,
Trans. Amer. Math. Soc. 277 (1983),
no. 1, 275–284. MR 690052
(84f:57029), http://dx.doi.org/10.1090/S00029947198306900520
 [JM]
Stefan
Jackowski and James
E. McClure, Homotopy approximations for classifying spaces of
compact Lie groups, Algebraic topology (Arcata, CA, 1986) Lecture
Notes in Math., vol. 1370, Springer, Berlin, 1989,
pp. 221–234. MR 1000379
(90m:55012), http://dx.doi.org/10.1007/BFb0085230
 [KP]
Daniel
S. Kahn and Stewart
B. Priddy, The transfer and stable homotopy theory, Math.
Proc. Cambridge Philos. Soc. 83 (1978), no. 1,
103–111. MR 0464230
(57 #4164b)
 [L]
Kathryn
Lesh, Infinite loop spaces from group theory, Math. Z.
225 (1997), no. 3, 467–483. MR 1465902
(98j:55009), http://dx.doi.org/10.1007/PL00004622
 [M]
J.
P. May, 𝐸_{∞} spaces, group completions, and
permutative categories, New developments in topology (Proc. Sympos.
Algebraic Topology, Oxford, 1972), Cambridge Univ. Press, London, 1974,
pp. 61–93. London Math. Soc. Lecture Note Ser., No. 11. MR 0339152
(49 #3915)
 [S]
Graeme
Segal, Categories and cohomology theories, Topology
13 (1974), 293–312. MR 0353298
(50 #5782)
 [tD]
Tammo
tom Dieck, Orbittypen und äquivariante Homologie. I,
Arch. Math. (Basel) 23 (1972), 307–317 (German). MR 0310919
(46 #10017)
 [A]
 J. F. Adams, ``Infinite Loop Spaces'', Princeton University Press, Princeton, NJ, 1978. MR 80d:55001
 [BE]
 M. Barratt and P. Eccles, structures  I: a free group functor for stable homotopy theory, Topology 13 (1974) 25  45. MR 50:1234a
 [BF]
 A. Bousfield and E. Friedlander, Homotopy theory of spaces, spectra, and bisimplicial sets, in, ``Geometric Applications of Homotopy Theory II'', 80130, M. Barratt and M. Mahowald (eds.), Lecture Notes in Math. 658, SpringerVerlag, 1978. MR 80e:55021
 [BK]
 A. Bousfield and D. Kan, Homotopy limits, completions, and localizations, Lecture Notes in Math. 304, SpringerVerlag, 1972. MR 51:1825
 [E]
 A. Elmendorf, Systems of fixed points, Trans. Amer. Math. Soc. 277 (1983) 275284. MR 84f:57029
 [JM]
 S. Jackowski and J. McClure, Homotopy approximations for classifying spaces of compact Lie groups, in, ``Algebraic Topology, Proceedings, Arcata, 1986,'' 221234, G. Carlsson, R. L. Cohen, H. R. Miller, D. C. Ravenel (eds.), Lecture Notes in Math. 1370, SpringerVerlag, 1989. MR 90m:55012
 [KP]
 D. Kahn and S. Priddy, The transfer and stable homotopy theory, Math. Proc. Cambridge Philos. Soc. 83 (1978) 103111. MR 57:4164b
 [L]
 K. Lesh, Infinite loop spaces from group theory, Math. Z. 225 (1997) 467483. MR 98j:55009
 [M]
 J. P. May, spaces, group completions, and permutative categories, in, ``New Developments in Topology (Proc. Sympos. Algebraic Topology, Oxford, 1972),'' 6193, London Math. Soc. Lecture Note Series 11, Cambridge Univ. Press, 1974. MR 49:3915
 [S]
 G. Segal, Categories and cohomology theories, Topology 13 (1974) 293312. MR 50:5782
 [tD]
 T. tom Dieck, Orbittypen und äquivariante homologie. I. Arch. Math. (Basel) 23 (1972) 307317. MR 46:10017
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55P47,
55N20,
55P42
Retrieve articles in all journals
with MSC (2000):
55P47,
55N20,
55P42
Additional Information
Kathryn Lesh
Affiliation:
Department of Mathematics, University of Toledo, Toledo, Ohio 436063390
Email:
klesh@uoft02.utoledo.edu
DOI:
http://dx.doi.org/10.1090/S0002994700026106
PII:
S 00029947(00)026106
Received by editor(s):
November 26, 1997
Published electronically:
March 15, 2000
Article copyright:
© Copyright 2000
American Mathematical Society
