Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Projective manifolds with small pluridegrees


Authors: Mauro C. Beltrametti and Andrew J. Sommese
Journal: Trans. Amer. Math. Soc. 352 (2000), 3045-3064
MSC (1991): Primary 14J40; Secondary 14M99, 14C20
DOI: https://doi.org/10.1090/S0002-9947-99-02429-0
Published electronically: May 21, 1999
MathSciNet review: 1641087
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mathcal{L}$ be a very ample line bundle on a connected complex projective manifold $\mathcal{M}$ of dimension $n\ge 3$. Except for a short list of degenerate pairs $(\mathcal{M},\mathcal{L})$, $\kappa(K_\mathcal{M}+(n-2)\mathcal{L})=n$ and there exists a morphism $\pi: \mathcal{M} \to M$ expressing $\mathcal{M}$ as the blowup of a projective manifold $M$ at a finite set $B$, with $\mathcal{K}_M:=K_M+(n-2)L$ nef and big for the ample line bundle $L:= (\pi _*\mathcal{L})^{**}$. The projective geometry of $(\mathcal{M},\mathcal{L})$ is largely controlled by the pluridegrees $d_j:=L^{n-j}\cdot (K_M+(n-2)L)^j$ for $j=0,\ldots,n$, of $(\mathcal{M},\mathcal{L})$. For example, $d_0+d_1=2g-2$, where $g$ is the genus of a curve section of $(\mathcal{M},\mathcal{L})$, and $d_2$ is equal to the self-intersection of the canonical divisor of the minimal model of a surface section of $(\mathcal{M},\mathcal{L})$. In this article, a detailed analysis is made of the pluridegrees of $(\mathcal{M},\mathcal{L})$. The restrictions found are used to give a new lower bound for the dimension of the space of sections of $\mathcal{K}_M$. The inequalities for the pluridegrees, that are presented in this article, will be used in a sequel to study the sheet number of the morphism associated to $|2(K_\mathcal{M}+ (n-2)\mathcal{L})|$.


References [Enhancements On Off] (What's this?)

  • 1. M.C. Beltrametti, M.L. Fania, and A.J. Sommese, ``On the adjunction theoretic classification of projective varieties,'' Math. Ann. 290 (1991), 31-62. MR 92f:14038
  • 2. M.C. Beltrametti, M. Schneider, and A.J. Sommese, ``Threefolds of degree $11$ in $\mathbb{P}^{5}$,'' in Complex Projective Geometry, ed. by G. Ellingsrud, C. Peskine, G. Sacchiero, and S.A. Stromme, London Math. Soc. Lecture Note Ser. 179 (1992), 59-80. MR 94d:14037
  • 3. M.C. Beltrametti, M. Schneider, and A.J. Sommese, Some special properties of the adjunction theory for $3$-folds in $\mathbb{P}^{5}$, Memoirs Amer. Math. Soc., v. 116, n. 554 (1995). MR 95k:14055
  • 4. M.C. Beltrametti and A.J. Sommese, ``Special results in adjunction theory in dimension four and five,'' Ark. Mat. 31 (1993), 197-208. MR 95c:14008
  • 5. M.C. Beltrametti and A.J. Sommese, ``On the adjunction theoretic classification of polarized varieties,'' J. Reine Angew. Math. 427 (1992), 157-192. MR 93d:14012
  • 6. M.C. Beltrametti and A.J. Sommese, ``On the dimension of the adjoint linear system for threefolds,'' Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. (4), 22 (1995), 1-24. MR 96e:14005
  • 7. M.C. Beltrametti and A.J. Sommese, The Adjunction Theory of Complex Projective Varieties, Expositions in Mathematics, 16, W. de Gruyter, 1995. MR 96f:14004
  • 8. M.C. Beltrametti and A.J. Sommese, ``On the second adjunction mapping. The case of a $1$-dimensional image,'' Trans. Amer. Math. Soc. 349 (1997), 3277-3302. MR 97j:14043
  • 9. M.C. Beltrametti and A.J. Sommese, ``On the degree and the birationality of the second adjunction mapping,'' International Journal of Mathematics, to appear.
  • 10. T. Fujita, ``Remarks on quasi-polarized varieties,'' Nagoya Math. J. 115 (1989), 105-123. MR 90i:14045
  • 11. E. Horikawa, ``Algebraic surfaces of general type with small $c_1^2$, I,'' Ann. Math. 104 (1976), 357-387. MR 54:12789
  • 12. A. Lanteri, M. Palleschi, and A.J. Sommese, ``On triple covers of $\mathbb{P}^{n}$ as very ample divisors,'' in Classification of Algebraic Varieties, Proceedings L'Aquila, 1992, ed.by C. Ciliberto, E.L. Livorni, and A.J. Sommese, Contemp. Math. 162 (1994), 277-292.MR 95f:14012
  • 13. E.L. Livorni and A.J. Sommese, ``Threefolds of non-negative Kodaira dimension with sectional genus less than or equal to $15$,'' Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. (4) 13 (1986), 537-558. MR 88m:14032

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14J40, 14M99, 14C20

Retrieve articles in all journals with MSC (1991): 14J40, 14M99, 14C20


Additional Information

Mauro C. Beltrametti
Affiliation: Dipartimento di Matematica, Università Degli Studi di Genova, Via Dodecaneso 35, I-16146 Genova, Italy
Email: beltrame@dima.unige.it

Andrew J. Sommese
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email: sommese@nd.edu

DOI: https://doi.org/10.1090/S0002-9947-99-02429-0
Keywords: Smooth complex polarized $n$-fold, very ample line bundle, adjunction theory, log-general type, pluridegrees.
Received by editor(s): February 8, 1998
Published electronically: May 21, 1999
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society