Hopf algebras of types and which give rise to certain invariants of knots, links and 3-manifolds

Authors:
Shlomo Gelaki and Sara Westreich

Journal:
Trans. Amer. Math. Soc. **352** (2000), 3821-3836

MSC (2000):
Primary 16W30

DOI:
https://doi.org/10.1090/S0002-9947-00-02283-2

Published electronically:
April 18, 2000

MathSciNet review:
1491865

Full-text PDF

Abstract | References | Similar Articles | Additional Information

In this paper we determine when Lusztig's has all the desired properties necessary to define invariants of knots, links and 3-manifolds. Specifically, we determine when it is ribbon, unimodular and factorizable. We also compute the integrals and distinguished elements involved.

**[D1]**V. G. Drinfeld, On almost cocommutative Hopf algebras, Leningrad Math. J. 1 (1990), 321-342. MR**91b:16046****[D2]**V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl.**32**(1985), 251-258. MR**87h:58080****[GW]**S. Gelaki and S. Westreich, On the quasitriangularity of , J. London Math. Soc. (2)**57**(1998), 105-125. MR**99e:16051****[H]**M. A. Hennings, Invariants of links and 3-manifolds obtained from Hopf algebras, J. London Math. Soc. (2)**54**(1996), 593-624. MR**98g:57011****[J]**M. Jimbo, Quantum groups and the Yang-Baxter equation, to appear.**[K]**L. H. Kauffman, Gauss codes, quantum groups and ribbon Hopf algebras, Rev. Math. Phys.**5**(1993), 735-773. MR**94k:57013****[KR1]**L. H. Kauffman and D. E. Radford, A necessary and sufficient condition for a finite-dimensional Drinfeld double to be a ribbon Hopf algebra, J. of Algebra**159**(1993), 98-114. MR**94d:16037****[KR2]**L. H. Kauffman and D. E. Radford, Invariants of 3-manifolds derived from finite dimensional Hopf algebras, J. Knot Theory Ramifications**4**(1995), 131-162. MR**96d:57018****[L]**G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc.**3**(1990), 257-296. MR**91e:17009****[NZ]**W. D. Nichols and M. B. Zoeller, A Hopf algebra freeness theorem, Amer. J. of Math.**111**(1989), 381-385. MR**90c:16008****[R1]**D. E. Radford, On Kauffman's knot invariants arising from finite-dimensional Hopf algebras, Advances in Hopf algebras (Chicago, 1992), Lecture Notes Pure Appl. Math., vol. 158, Marcel Dekker, New York, 1994, pp. 205-266. MR**96g:57013****[R2]**D. E. Radford, Minimal quasitriangular Hopf algebras, J. of Algebra**157**(1993), 281-315. MR**94c:16052****[RT]**N. Yu. Reshetikhin and V. G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, Invent. Math.**103**(1991), 547-597. MR**92b:57024****[T]**M. Takeuchi, Some Topics on , J. of Algebra**147**(1992), 379-410. MR**93b:17055****[Y]**H. Yamane, A Poincaré-Birkhoff-Witt theorem for quantized universal enveloping algebras of type , Publ. Res. Inst. Math. Sci.**25**(1989), 503-520. MR**91a:17016**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
16W30

Retrieve articles in all journals with MSC (2000): 16W30

Additional Information

**Shlomo Gelaki**

Affiliation:
Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Address at time of publication:
Mathematical Sciences Research Institute, 1000 Centennial Drive, Berkeley, California 94720

Email:
shlomi@msri.org

**Sara Westreich**

Affiliation:
Interdisciplinary Department of the Social Science, Bar-Ilan University, Ramat-Gan, Israel

Email:
swestric@mail.cc.biu.ac.il

DOI:
https://doi.org/10.1090/S0002-9947-00-02283-2

Received by editor(s):
April 2, 1997

Received by editor(s) in revised form:
November 12, 1997

Published electronically:
April 18, 2000

Additional Notes:
This research was supported by The Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.

Article copyright:
© Copyright 2000
American Mathematical Society