Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Semiclassical analysis of general second order elliptic operators on bounded domains

Authors: E. N. Dancer and J. López-Gómez
Journal: Trans. Amer. Math. Soc. 352 (2000), 3723-3742
MSC (2000): Primary 35P15, 35J10, 35B25
Published electronically: March 21, 2000
MathSciNet review: 1694285
Full-text PDF

Abstract | References | Similar Articles | Additional Information


In this work we ascertain the semiclassical behavior of the fundamental energy and the ground state of an arbitrary second order elliptic operator, not necessarily selfadjoint, on a bounded domain. Our analysis provides us with substantial improvements of many previous results found in the context of quantum mechanics for $C^\infty$ perturbations of the Laplacian.

References [Enhancements On Off] (What's this?)

  • 1. H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns. 146 (1998), 336-374. MR 99e:35057
  • 2. W. Arendt and C. J. K. Batty, Exponential stability of a diffusion equation with absorption, Diff. Int. Equns. 6 (1993), 1009-1024. MR 94k:35038
  • 3. I. Babuska and R. Výborný, Continuous dependence of eigenvalues on the domain, Czech. Math. J. 15 (1965), 169-178. MR 32:281
  • 4. C. J. K. Batty, Asymptotic stability of Schrödinger semigroups: Path integral methods, Math. Ann. 292 (1992), 457-492. MR 93g:47050
  • 5. E. N. Dancer, Some remarks on classical problems and fine properties of Sobolev spaces, Diff. Int. Eqns. 9 (1996), 437-446.MR 97e:35057
  • 6. E. N. Dancer, Some notes on the method of moving planes, Bull. Austral. Math. Soc. 46 (1992), 425-434. MR 93m:35080
  • 7. B. Gidas and J. Sprück, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Equns. 6 (1981), 883-901. MR 82h:35033
  • 8. B. Helffer, Semi-classical Analysis for the Schrödinger Operator and Applications, Lectures Notes in Mathematics 1336, Springer 1988.MR 90c:81043
  • 9. B. Helffer and J. Sjöstrand, Multiple wells in the semiclassical limit, I, Comm. PDEs 9 (1984), 337-408.MR 86c:35113
  • 10. B. Helffer and J. Sjöstrand, Puits multiples en limite semi-classique, II. Interaction moléculaire, symétries, perturbation, Ann. Inst. H. Poincaré 42 (1985), 127-212. MR 87a:35142
  • 11. B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit, III. Interaction through non-resonant wells, Math. Nach. 124 (1985), 263-313. MR 87i:35161
  • 12. P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Res. Notes in Math., vol. 247, Longman, Harlow 1991. MR 92h:35001
  • 13. P. Hess and T. Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. Part. Diff. Eqns. 5 (1980), 999-1030. MR 81m:35102
  • 14. P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory with Applications to Schrödinger Operators, Appl. Math. Sc. 113, Springer, New York 1996. MR 98h:47003
  • 15. T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, Berlin 1995. MR 96a:47025
  • 16. J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Diff. Eqns. 127 (1996), 263-294. MR 97b:35037
  • 17. J. López-Gómez, On the linear damped wave equation, J. Diff. Eqns. 134 (1997), 26-45. MR 97m:35161
  • 18. J. López-Gómez, On the structure of the permanence region for competing species models with general diffusivities and transport effects, Disc. Cont. Dyn. Sys. 2 (1996), 525-542. MR 98d:92016
  • 19. A. Martínez and M. Rouleux, Effet tunnel entre puits dégénérés, Comm. Part. Diff. Eqns. 13 (1988), 1157-1187. MR 89h:35085
  • 20. B. de Pagter, Irreducible compact operators, Math. Z. 192 (1986), 149-153. MR 87d:47052
  • 21. H. H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin 1974. MR 54:11023
  • 22. B. Simon, Semiclassical analysis of low lying eigenvalues, I. Non-degenerate minima: Asymptotic expansions, Ann. Inst. Henri Poincaré A XXXVIII (1983), 12-37. MR 85m:81040
  • 23. B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of Mathematics 120 (1984), 89-118. MR 87h:81045a
  • 24. B. Simon, Semiclassical analysis of low lying eigenvalues, III. Width of the ground state band in strongly coupled solids, Annals of Physics 158 (1984), 415-420. MR 87h:81045b
  • 25. B. Simon, Semiclassical analysis of low lying eigenvalues, IV. The flea of the elephant, J. Funct. Anal. 63 (1985), 123-136. MR 87h:81045c
  • 26. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J. 1970. MR 44:7280

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35P15, 35J10, 35B25

Retrieve articles in all journals with MSC (2000): 35P15, 35J10, 35B25

Additional Information

E. N. Dancer
Affiliation: Department of Mathematics, The University of Sydney, Sydney, N.S.W. 2006, Australia

J. López-Gómez
Affiliation: Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040-Madrid, Spain

Received by editor(s): August 13, 1997
Received by editor(s) in revised form: April 21, 1998
Published electronically: March 21, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society