Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A wall-crossing formula for the signature of symplectic quotients


Author: David S. Metzler
Journal: Trans. Amer. Math. Soc. 352 (2000), 3495-3521
MSC (2000): Primary 53D20; Secondary 57R85
DOI: https://doi.org/10.1090/S0002-9947-00-02569-1
Published electronically: April 13, 2000
MathSciNet review: 1695030
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We use symplectic cobordism, and the localization result of Ginzburg, Guillemin, and Karshon to find a wall-crossing formula for the signature of regular symplectic quotients of Hamiltonian torus actions. The formula is recursive, depending ultimately on fixed point data. In the case of a circle action, we obtain a formula for the signature of singular quotients as well. We also show how formulas for the Poincaré polynomial and the Euler characteristic (equivalent to those of Kirwan can be expressed in the same recursive manner.


References [Enhancements On Off] (What's this?)

  • [Ati82] M. F. Atiyah.
    Convexity and commuting Hamiltonians.
    Bull. London Math. Soc., 14:1-15, 1982. MR 83e:53037
  • [CHS57] S. S. Chern, F. Hirzebruch, and J.-P. Serre.
    On the index of a fibered manifold.
    Proc. Amer. Math. Soc., 8:587-596, 1957. MR 19:441c
  • [Del88] Thomas Delzant.
    Hamiltoniens periodiques et images convexes de l'application moment.
    Bull. Soc. Math. France, 116(3):315-339, 1988. MR 90b:58069
  • [DH82] J. J. Duistermaat and G. J. Heckman.
    On the variation in the cohomology of the symplectic form of the reduced phase space.
    Inventiones Mathematicae, 69:259-268, 1982. MR 84h:58051a
  • [Ful93] William Fulton.
    Introduction to toric varieties.
    Number 131 in Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1993. MR 94g:14028
  • [GGK96] Viktor Ginzburg, Victor Guillemin, and Yael Karshon.
    Cobordism theory and localization formulas for Hamiltonian group actions.
    Int. Math. Res. Not., (5):221-234, 1996. MR 97d:57046
  • [GLS96] Victor Guillemin, Eugene Lerman, and Shlomo Sternberg.
    Symplectic Fibrations and Multiplicity Diagrams.
    Cambridge University Press, 1996. MR 98d:58074
  • [GS82] Victor Guillemin and Shlomo Sternberg.
    Convexity properties of the moment mapping.
    Inventiones Mathematicae, 67:491-513, 1982. MR 83m:58037
  • [GS84] Victor Guillemin and Shlomo Sternberg.
    Symplectic Techniques in Physics.
    Cambridge University Press, Cambridge-New York, 1984. MR 86f:58054
  • [GS89] Victor Guillemin and Shlomo Sternberg.
    Birational equivalence in the symplectic category.
    Inventiones Mathematicae, 97:485-522, 1989. MR 90f:58060
  • [Gui94] Victor Guillemin.
    Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces.
    Number 122 in Progress in Mathematics. Birkhäuser, Boston, 1994. MR 96e:58064
  • [HBJ92] Friedrich Hirzebruch, Thomas Berger, and Rainer Jung.
    Manifolds and Modular Forms.
    Aspects of Mathematics, E20 Vieweg, 1992. MR 94d:57001
  • [Hir66] Friedrich Hirzebruch.
    Topological Methods in Algebraic Geometry.
    Springer-Verlag, New York, third edition edition, 1966.
    (English). MR 34:2573
  • [JK95] Lisa Jeffrey and Frances Kirwan.
    Localization for nonabelian group actions.
    Topology, 34(2):291-327, 1995. MR 97g:58057
  • [Kar98] Yael Karshon.
    Moment maps and non-compact cobordisms.
    J. Diff. Geom., (49):183-201, 1998. MR 99h:58064
  • [Kaw91] Katsuo Kawakubo.
    The Theory of Transformation Groups.
    Oxford University Press, Oxford, UK, 1991. MR 93g:57044
  • [Kir84] Frances Kirwan.
    Cohomology of quotients in symplectic and algebraic geometry.
    Number 31 in Mathematical Notes. Princeton University Press, Princeton, 1984. MR 86i:58050
  • [Kir88] Frances Kirwan.
    An introduction to intersection homology theory.
    Number 187 in Research Notes in Mathematics. John Wiley & Sons, New York, 1988. MR 90e:55013
  • [LT] Eugene Lerman and Sue Tolman.
    Intersection cohomology of $S^1$ symplectic quotients and small resolutions.
    math.DG/9810046.
  • [LT97] Eugene Lerman and Susan Tolman.
    Hamiltonian torus actions on symplectic orbifolds and toric varieties.
    Trans. Amer. Math. Soc., (349):4201-4230, 1997. MR 98a:57043
  • [Met97] David Metzler.
    Topological Invariants of Symplectic Quotients.
    PhD thesis, MIT, 1997.
    Available at http://math.rice.edu/$\sim$metzler/preprints.html.
  • [MS95] Dusa McDuff and Dietmar Salamon.
    Introduction to Symplectic Topology.
    Oxford University Press, New York, 1995. MR 97b:58062
  • [SL91] Reyer Sjamaar and Eugene Lerman.
    Stratified symplectic spaces and reduction.
    Annals of Mathematics, 134(2):375-422, 1991. MR 92g:58036
  • [Tol98] Sue Tolman.
    Examples of non-Kähler hamiltonian torus actions.
    Inventiones Mathematicae, 131(2):299-310, 1998. CMP 98:09

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 53D20, 57R85

Retrieve articles in all journals with MSC (2000): 53D20, 57R85


Additional Information

David S. Metzler
Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005
Email: metzler@math.rice.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02569-1
Keywords: Symplectic geometry, Hamiltonian action, equivariant cobordism
Received by editor(s): September 20, 1998
Published electronically: April 13, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society