Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A condition for the stability of $\mathbb{R} $-covered on foliations of 3-manifolds

Authors: Sue Goodman and Sandi Shields
Journal: Trans. Amer. Math. Soc. 352 (2000), 4051-4065
MSC (2000): Primary 57M12, 57M20, 57N10, 57R30
Published electronically: May 12, 2000
MathSciNet review: 1624178
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a sufficient condition for a codimension one, transversely orientable foliation of a closed 3-manifold to have the property that any foliation sufficiently close to it be $\mathbb{R} $-covered. This condition can be readily verified for many examples. Further, if an $\mathbb{R} $-covered foliation has a compact leaf $L$, then any transverse loop meeting $L$ lifts to a copy of the leaf space, and the ambient manifold fibers over $S^1$ with $L$ as fiber.

References [Enhancements On Off] (What's this?)

  • [Ba1] T. Barbot: Geometrie transverse des flots d'Anovox, Thesis, Ecole Norm. Sup., Lyon, 1992.
  • [Ba2] T. Barbot: Caracterisation des flots d'Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory and Dynamical Systems 15 (1995), 247-270. MR 96d:58100
  • [C-G] J. Christy and S. Goodman: Branched surfaces transverse to codimension one foliations, preprint.
  • [Fe1] S. Fenley: Anosov flows in 3-manifolds, Ann of Math. 139 (1994), 79-115. MR 94m:58162
  • [Fe2] S. Fenley: Continuous extension of Anosov foliations, preprint.
  • [Ga1] D. Gabai: Foliations and the topology of 3-manifolds, J. of Differential Geometry 18 (1983), 445-503. MR 86a:57009
  • [Ga2] D. Gabai: Foliations and the topology of 3-manifolds II, J. of Differential Geometry 26 (1987), 461-478. MR 89a:57014a
  • [Ga3] D. Gabai: Foliations and the topology of 3-manifolds III, J. of Differential Geometry 26 (1987), 479-536. MR 89a:57014b
  • [Gh] E. Ghys: Flots d'Anosov sur les 3-variétés fibres en cercles, Ergodic Theory and Dynamical Systems 4 (1984), 67-80. MR 86b:58098
  • [Go] S. Goodman: Closed leaves in foliations of codimension one, Comm. Math. Helv. 50 (1975), 383-388. MR 54:11350
  • [Ha] A. Haefliger: Varietes (non separees) a une dimension et structures feullitees du plan, Enseignement Mathematique 3 (1957), 107-125. MR 19:671c
  • [He] J. Hempel: 3-manifolds, Annals of Math. Studies 86, Princeton University Press (1976). MR 54:3702
  • [Hi] M.W. Hirsch: Stability of compact leaves of foliations, Dynamical Systems, ed. by Peixoto, Academic Press (1973), 135-153. MR 48:12555
  • [N] S.P. Novikov: Topology of Foliations, Trudy Moskov. Mat. Obsc. 14 (1965), 248-278 (Russian); AMS translation (1967), 268-304. MR 34:824
  • [Pa] F. Palmeira: Open manifolds foliated by planes, Annals of Math. 107 (1978), 109-131.
  • [Pl1] J. Plante: Anosov flows, transversely affine foliations and a conjecture of Verjovsky, J. London Math. Soc. (2) 23 (1981), 359-362. MR 82g:58069
  • [Pl2] J. Plante: Solvable groups acting on the line, Trans. Amer. Math. Soc. 278 (1983), 404-414. MR 85b:57048
  • [Pl3] J. Plante: Diffeomorphisms without periodic points, Proc. Amer. Math. Soc. 88 (1983), 716-718. MR 84j:58102
  • [Ro] H. Rosenberg: Foliations by planes, Topology 7 (1968), 131-138. MR 37:3595
  • [R] R. Roussarie: Plongements dans les variétés feuilletées et classification de feulletages sans holonomie, I.H.E.S. Sci. Publ. Math. 43 (1973), 101-142. MR 50:11268
  • [Sch] P. Schweitzer: Existence of codimension one foliations with minimal leaves, Ann. Global Analysis Geom. 9(1) (1991), 77-81. MR 92g:57040
  • [Sh1] S. Shields: Branched surfaces and the stability of compact leaves, thesis, University of North Carolina at Chapel Hill (1991).
  • [Sh2] S. Shields: Stability for a class of foliations covered by a product, Michigan Math. J. 44 (1997), 3-20. MR 98j:57043
  • [So] V. Solodov: On the universal cover of Anosov flows, Research announcement.
  • [Su] D. Sullivan: A homological characterization of foliations consisting of minimal surfaces, Comment. Math. Helv. 54 (1979), 218-223. MR 80m:57022
  • [T] W.P. Thurston: Norm on the homology of 3-manifolds, Mem. Amer. Math. Soc. 339 (1986), 99-130. MR 88h:57014
  • [V] A. Verjovsky: Codimension one Anosov flows, Bol. Soc. Mat. Mexicana 19 (1974), 49-77. MR 55:4282
  • [W] R.F. Williams: Expanding attractors, Institut des Hautes Etudes Scientifiques, Publications Mathematiques 43 (1973), 473-487. MR 50:1289

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M12, 57M20, 57N10, 57R30

Retrieve articles in all journals with MSC (2000): 57M12, 57M20, 57N10, 57R30

Additional Information

Sue Goodman
Affiliation: Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3902

Sandi Shields
Affiliation: Department of Mathematics, College of Charleston, Charleston, South Carolina 29424

Keywords: Branched surface, foliation, $\mathbb{R}$-covered
Received by editor(s): September 3, 1996
Received by editor(s) in revised form: April 18, 1998
Published electronically: May 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society