Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Robin boundary value problems on arbitrary domains

Author: Daniel Daners
Journal: Trans. Amer. Math. Soc. 352 (2000), 4207-4236
MSC (2000): Primary 35J25; Secondary 35D10, 35B45
Published electronically: March 21, 2000
MathSciNet review: 1650081
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


We develop a theory of generalised solutions for elliptic boundary value problems subject to Robin boundary conditions on arbitrary domains, which resembles in many ways that of the Dirichlet problem. In particular, we establish $L_p$-$L_q$-estimates which turn out to be the best possible in that framework. We also discuss consequences to the spectrum of Robin boundary value problems. Finally, we apply the theory to parabolic equations.

References [Enhancements On Off] (What's this?)

  • 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • 2. Wolfgang Arendt, Gaussian estimates and interpolation of the spectrum in 𝐿^{𝑝}, Differential Integral Equations 7 (1994), no. 5-6, 1153–1168. MR 1269649
  • 3. J. Thomas Beale, Scattering frequencies of reasonators, Comm. Pure Appl. Math. 26 (1973), 549–563. MR 0352730
  • 4. Marie-Hélène Bossel, Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys. 39 (1988), no. 5, 733–742 (French, with English summary). MR 963641, 10.1007/BF00948733
  • 5. E. N. Dancer, The effect of domain shape on the number of positive solutions of certain nonlinear equations, J. Differential Equations 74 (1988), no. 1, 120–156. MR 949628, 10.1016/0022-0396(88)90021-6
  • 6. E. N. Dancer and D. Daners, A priori bounds for solutions and spectra of Robin boundary value problems, Tech. Report No. 94-33, University of Sydney, 1994.
  • 7. E. N. Dancer and D. Daners, Domain perturbation for elliptic equations subject to Robin boundary conditions, J. Differential Equations 138 (1997), no. 1, 86–132. MR 1458457, 10.1006/jdeq.1997.3256
  • 8. Daniel Daners, Heat kernel estimates for operators with boundary conditions, Math. Nachr., to appear.
  • 9. Robert Dautray and Jacques-Louis Lions, Mathematical analysis and numerical methods for science and technology. Vol. 5, Springer-Verlag, Berlin, 1992. Evolution problems. I; With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon; Translated from the French by Alan Craig. MR 1156075
  • 10. E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239
  • 11. Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
  • 12. Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. MR 0257325
  • 13. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 14. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • 15. M. A. Krasnosel′skiĭ, On a theorem of M. Riesz, Soviet Math. Dokl. 1 (1960), 229–231. MR 0119086
  • 16. Peter D. Lax and Ralph S. Phillips, On the scattering frequencies of the Laplace operator for exterior domains, Comm. Pure Appl. Math. 25 (1972), 85–101. MR 0296471
  • 17. Moshe Marcus and Victor J. Mizel, Every superposition operator mapping one Sobolev space into another is continuous, J. Funct. Anal. 33 (1979), no. 2, 217–229. MR 546508, 10.1016/0022-1236(79)90113-7
  • 18. V. G. Maz'ja, Classes of regions and embedding theorems for function spaces, Soviet Math. Dokl. 1 (1960), 882-885. MR 23A:3448
  • 19. -, Zur Theorie Sobolewscher Räume, Teubner-Texte zur Mathematik, Teubner, Leipzig, 1981.
  • 20. Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985
  • 21. W. Arendt, A. Grabosch, G. Greiner, U. Groh, H. P. Lotz, U. Moustakas, R. Nagel, F. Neubrander, and U. Schlotterbeck, One-parameter semigroups of positive operators, Lecture Notes in Mathematics, vol. 1184, Springer-Verlag, Berlin, 1986. MR 839450
  • 22. Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
  • 23. L. E. Payne and H. F. Weinberger, Lower bounds for vibration frequencies of elastically supported membranes and plates, J. Soc. Indust. Appl. Math. 5 (1957), 171–182. MR 0092431
  • 24. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486
  • 25. Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144020
  • 26. Helmut H. Schaefer, Banach lattices and positive operators, Springer-Verlag, New York-Heidelberg, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 215. MR 0423039
  • 27. René P. Sperb, Untere und obere Schranken für den tiefsten Eigenwert der elastisch gestützten Membran, Z. Angew. Math. Phys. 23 (1972), 231–244 (German, with English summary). MR 0312800
  • 28. René P. Sperb, Maximum principles and their applications, Mathematics in Science and Engineering, vol. 157, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 615561
  • 29. Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265–308. MR 0369884
  • 30. N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884
  • 31. William P. Ziemer, Weakly differentiable functions, Graduate Texts in Mathematics, vol. 120, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. MR 1014685

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J25, 35D10, 35B45

Retrieve articles in all journals with MSC (2000): 35J25, 35D10, 35B45

Additional Information

Daniel Daners
Affiliation: School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia

Received by editor(s): April 5, 1996
Received by editor(s) in revised form: May 19, 1998
Published electronically: March 21, 2000
Additional Notes: Supported by a grant of the Australian Research Council
Article copyright: © Copyright 2000 American Mathematical Society