Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Specializations of Brauer classes over algebraic function fields


Authors: Burton Fein and Murray Schacher
Journal: Trans. Amer. Math. Soc. 352 (2000), 4355-4369
MSC (2000): Primary 12E15, 12G05, 16K50
DOI: https://doi.org/10.1090/S0002-9947-00-02474-0
Published electronically: May 12, 2000
MathSciNet review: 1661250
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $F$ be either a number field or a field finitely generated of transcendence degree $\ge 1$ over a Hilbertian field of characteristic 0, let $F(t)$ be the rational function field in one variable over $F$, and let ${\alpha }\in \operatorname {Br}(F(t))$. It is known that there exist infinitely many $a\in F$ such that the specialization $t\to a$ induces a specialization ${\alpha }\to \overline {{\alpha }}\in \operatorname {Br}(F)$, where $\overline {{\alpha }}$ has exponent equal to that of ${\alpha }$. Now let $K$ be a finite extension of $F(t)$ and let ${\beta }=\operatorname {res}_{K/F(t)}({\alpha })$. We give sufficient conditions on ${\alpha }$ and $K$ for there to exist infinitely many $a\in F$ such that the specialization $t\to a$has an extension to $K$ inducing a specialization ${\beta }\to \overline {{\beta }}\in \operatorname {Br}(\overline{K})$, $\overline{K}$ the residue field of $K$, where $\overline {{\beta }}$ has exponent equal to that of ${\beta }$. We also give examples to show that, in general, such $a\in F$ need not exist.


References [Enhancements On Off] (What's this?)

  • [E] O. Endler, Valuation theory, Springer-Verlag, Berlin/Heidelberg/New York, 1972. MR 50:9847
  • [FSS] B. Fein, D. Saltman, and M. Schacher, Brauer-Hilbertian fields, Trans. Amer. Math. Soc. 334 (1992), 915-928. MR 93b:12006
  • [FS1] B. Fein and M. Schacher, Brauer groups of rational function fields over global fields, Groupe de Brauer (M. Kervaire and M. Ojanguren, eds.), LNM#844, Springer-Verlag, Berlin 1981, pp. 46-74. MR 82h:12025
  • [FS2] -, A conjecture about relative Brauer groups, in K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (B. Jacob and A. Rosenberg, eds.), Proceedings of Symposia in Pure Mathematics, Vol. 58, Amer. Math. Soc., Providence, pp. 161-169. MR 96e:12006
  • [FS3] -, Crossed products over algebraic function fields, J. Algebra 171 (1995), 531-540. MR 96b:12003
  • [FJ] M. Fried and M. Jarden, Field arithmetic, Springer-Verlag, Berlin, 1986. MR 89b:12010
  • [G] W.-D. Geyer, Galois groups of intersections of local fields, Israel J. of Mathematics 30 (1978), 382-396. MR 80a:12017
  • [J] N. Jacobson, Finite-dimensional division algebras over fields, Springer-Verlag, Berlin, 1996. MR 98a:16024
  • [P] R. Pierce, Associative algebras, Springer-Verlag, Berlin, 1982. MR 84c:16001
  • [Sa] D. Saltman, The Brauer group and the center of generic matrices, J. Algebra 97 (1985), 53-67. MR 87a:13005
  • [Se1] J.-P. Serre, Corps locaux, Hermann, Paris, 1962. MR 27:133
  • [Se2] J.-P. Serre, Spécialisation des éléments de $\operatorname {Br}_{2}(\mathbb{Q} (T_{1},\ldots ,T_{n}))$, C. R. Acad. Sci. Paris 311 (1990), 397-402. MR 91m:12007
  • [V] I. I. Voronovich, Linear local-global principle for algebras over rational function fields, Preprint #25(295), Minsk, 1987 (Russian).
  • [We] E. Weiss, Algebraic Number Theory, Mc-Graw Hill, New York, 1963. MR 28:3021
  • [Wi] E. Witt, Gegenbeispiel zum Normensatz, Math. Zeit. 39 (1934), 462-467.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 12E15, 12G05, 16K50

Retrieve articles in all journals with MSC (2000): 12E15, 12G05, 16K50


Additional Information

Burton Fein
Affiliation: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
Email: fein@math.orst.edu

Murray Schacher
Affiliation: Department of Mathematics, University of California at Los Angeles, Los Angeles, California 90024
Email: mms@math.ucla.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02474-0
Keywords: Brauer group, Brauer-Hilbertian, corestriction, Hilbertian, specializations.
Received by editor(s): March 23, 1998
Received by editor(s) in revised form: October 30, 1998
Published electronically: May 12, 2000
Additional Notes: The authors are grateful for support under NSA Grants MDA904-97-1-0040 and MDA904-97-1-0060, respectively.
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society