Some properties of minimal surfaces in singular spaces
Author:
Chikako Mese
Journal:
Trans. Amer. Math. Soc. 352 (2000), 39573969
MSC (1991):
Primary 58E12
Published electronically:
May 22, 2000
MathSciNet review:
1661254
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper involves the generalization of minimal surface theory to spaces with singularities. Let be an NPC space, i.e. a metric space of nonpositive curvature. We define a (parametric) minimal surface in as a conformal energy minimizing map. Using this definition, many properties of classical minimal surfaces can also be observed for minimal surfaces in this general setting. In particular, we will prove the boundary monotonicity property and the isoperimetric inequality for minimal surfaces in .
 [ABN]
A.
D. Aleksandrov, V.
N. Berestovskiĭ, and I.
G. Nikolaev, Generalized Riemannian spaces, Uspekhi Mat. Nauk
41 (1986), no. 3(249), 3–44, 240 (Russian). MR 854238
(88e:53103)
 [C]
Kevin
Corlette, Archimedean superrigidity and hyperbolic geometry,
Ann. of Math. (2) 135 (1992), no. 1, 165–182.
MR
1147961 (92m:57048), http://dx.doi.org/10.2307/2946567
 [GS]
Mikhail
Gromov and Richard
Schoen, Harmonic maps into singular spaces and 𝑝adic
superrigidity for lattices in groups of rank one, Inst. Hautes
Études Sci. Publ. Math. 76 (1992), 165–246.
MR
1215595 (94e:58032)
 [HL]
Robert
Hardt and FangHua
Lin, Harmonic maps into round cones and singularities of nematic
liquid crystals, Math. Z. 213 (1993), no. 4,
575–593. MR 1231879
(94h:58062), http://dx.doi.org/10.1007/BF03025739
 [HK]
W.
K. Hayman and P.
B. Kennedy, Subharmonic functions. Vol. I, Academic Press
[Harcourt Brace Jovanovich Publishers], London, 1976. London Mathematical
Society Monographs, No. 9. MR 0460672
(57 #665)
 [J1]
Jürgen
Jost, Equilibrium maps between metric spaces, Calc. Var.
Partial Differential Equations 2 (1994), no. 2,
173–204. MR 1385525
(98a:58049), http://dx.doi.org/10.1007/BF01191341
 [J2]
Jürgen
Jost, Convex functionals and generalized harmonic maps into spaces
of nonpositive curvature, Comment. Math. Helv. 70
(1995), no. 4, 659–673. MR 1360608
(96j:58043), http://dx.doi.org/10.1007/BF02566027
 [KS1]
Nicholas
J. Korevaar and Richard
M. Schoen, Sobolev spaces and harmonic maps for metric space
targets, Comm. Anal. Geom. 1 (1993), no. 34,
561–659. MR 1266480
(95b:58043)
 [KS2]
Nicholas
J. Korevaar and Richard
M. Schoen, Global existence theorems for harmonic maps to
nonlocally compact spaces, Comm. Anal. Geom. 5
(1997), no. 2, 333–387. MR 1483983
(99b:58061)
 [Me1]
C. Mese. The Curvature of Minimal Surfaces in Singular Spaces. to appear in Communications of Analysis and Geometry.
 [Me2]
C. Mese. Minimal Surfaces and Conformal Mappings into Singular Spaces. Ph.D. thesis. Stanford University, 1996.
 [MS]
J.
H. Michael and L.
M. Simon, Sobolev and meanvalue inequalities on generalized
submanifolds of 𝑅ⁿ, Comm. Pure Appl. Math.
26 (1973), 361–379. MR 0344978
(49 #9717)
 [Mo]
Charles
B. Morrey Jr., The problem of Plateau on a Riemannian
manifold, Ann. of Math. (2) 49 (1948), 807–851.
MR
0027137 (10,259f)
 [N]
I.
G. Nikolaev, Solution of the Plateau problem in spaces of curvature
at most 𝐾, Sibirsk. Mat. Zh. 20 (1979),
no. 2, 345–353, 459 (Russian). MR 530499
(80k:58041)
 [R1]
Y.G. Reshetnyak. Geometry IV Nonregular Riemann Geometry. Translated by E. Primrose. Encyclopedia of Mathematical Science, 70. SpringerBerlag, Berlin, 1993.
 [R2]
Ju.
G. Rešetnjak, Nonexpansive maps in a space of curvature no
greater than 𝐾, Sibirsk. Mat. Ž. 9
(1968), 918–927 (Russian). MR 0244922
(39 #6235)
 [S1]
Tomasz
Serbinowski, Boundary regularity of harmonic maps to nonpositively
curved metric spaces, Comm. Anal. Geom. 2 (1994),
no. 1, 139–153. MR 1312682
(95k:58050)
 [S2]
T. Serbinowski. Harmonic Maps into Metric Spaces with Curvature Bounded Above. Ph.D. thesis. University of Utah, 1995.
 [W1]
Michael
Wolf, Harmonic maps from surfaces to 𝐑trees, Math. Z.
218 (1995), no. 4, 577–593. MR 1326987
(97b:58042), http://dx.doi.org/10.1007/BF02571924
 [W2]
Michael
Wolf, On realizing measured foliations via quadratic differentials
of harmonic maps to 𝐑trees, J. Anal. Math.
68 (1996), 107–120. MR 1403253
(97k:32032), http://dx.doi.org/10.1007/BF02790206
 [ABN]
 A.D. Alexandrov, V.N. Berestoskii and I.G.Nikolaev. Generalized Riemann Spaces. Uspekhi Mat. Nauk, 41 (1986), 344. MR 88e:53103
 [C]
 K. Corlette. Archimedian Superrigidity and Hyperbolic Geometry. Ann. of Math., 135 (1992) 165182. MR 92m:57048
 [GS]
 M. Gromov and R. Schoen. Harmonic Maps into Singular Spaces and padic Supperrigidity for Lattices in Groups of Rank One. Inst. Hautes Études Sci. Publ. Math., 76 (1992), 165246. MR 94e:58032
 [HL]
 R. Hardt and FH Lin. Harmonic Maps into Round Cones and Singularities of Nematic Liquid Crystals. Math Z., 213 (1993) no. 4, 575593. MR 94h:58062
 [HK]
 W.K. Hayman and P.B. Kennedy. Subharmonic Functions, vol. 1. Academic Press, London, 1976. MR 57:665
 [J1]
 J. Jost. Equilibrium Maps Between Metric Spaces. Cal. Var. Partial Differential Equations 2, (1994) 173204. MR 98a:58049
 [J2]
 J. Jost. Convex Functionals and Generalized Harmonic Maps into Spaces of Nonpositive Curvature. Comment. Math. Helv., 70 (1995) no. 4, 659673. MR 96j:58043
 [KS1]
 N. Korevaar and R. Schoen. Sobolev Spaces and Harmonic Maps for Metric Space Targets. Communications in Analysis and Geometry, 1 (1993), 561659. MR 95b:58043
 [KS2]
 N. Korevaar and R. Schoen. Global Existence Theorems for Harmonic Maps to Nonlocally Compact Spaces. Comm. Anal. Geom., 5 (1997), 333387. MR 99b:58061
 [Me1]
 C. Mese. The Curvature of Minimal Surfaces in Singular Spaces. to appear in Communications of Analysis and Geometry.
 [Me2]
 C. Mese. Minimal Surfaces and Conformal Mappings into Singular Spaces. Ph.D. thesis. Stanford University, 1996.
 [MS]
 J.H. Michael and L.M. Simon. Sobolev and MeanValue Inequalities on Generalized Submanifolds of . Comm. Pure Appl. Math. 26 (1973), 361379. MR 49:9717
 [Mo]
 C.B. Morrey. The Plateau Problem on a Riemannian Manifold. Annals of Mathematics, 49 (1948), 807851. MR 10:259f
 [N]
 I.G. Nikolaev. Solution of the Plateau Problem in Spaces of Curvature at most . Sibirsk. Mat. Zh., 20 (1979), 345353. MR 80k:58041
 [R1]
 Y.G. Reshetnyak. Geometry IV Nonregular Riemann Geometry. Translated by E. Primrose. Encyclopedia of Mathematical Science, 70. SpringerBerlag, Berlin, 1993.
 [R2]
 Y.G. Reshetnyak. Nonexpanding Maps in a Space of Curvature No Greater than K. Sibirsk. Mat. Z. 9 (1968), 918927. MR 39:6235
 [S1]
 T. Serbinowski. Boundary Regularity of Harmonic Maps to Nonpositively Curved Metric Spaces. Comm. Anal. Geom., 2 (1994), 139153. MR 95k:58050
 [S2]
 T. Serbinowski. Harmonic Maps into Metric Spaces with Curvature Bounded Above. Ph.D. thesis. University of Utah, 1995.
 [W1]
 M. Wolf. Harmonic Maps from surfaces to trees. Math. Z., 218 no. 4 (1995), 577593. MR 97b:58042
 [W2]
 M. Wolf. On Realizing Measured Foliations Via Quadratic Differentials of Harmonic Maps to trees. J. Anal. Math., 68 (1996), 107120. MR 97k:32032
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (1991):
58E12
Retrieve articles in all journals
with MSC (1991):
58E12
Additional Information
Chikako Mese
Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089
Address at time of publication:
Department of Mathematics, Connecticut College, New London, Connecticut 06320
Email:
cmes@conncoll.edu
DOI:
http://dx.doi.org/10.1090/S0002994700024818
PII:
S 00029947(00)024818
Received by editor(s):
March 24, 1998
Received by editor(s) in revised form:
November 1, 1998
Published electronically:
May 22, 2000
Article copyright:
© Copyright 2000 American Mathematical Society
