Some properties of minimal surfaces in singular spaces

Author:
Chikako Mese

Journal:
Trans. Amer. Math. Soc. **352** (2000), 3957-3969

MSC (1991):
Primary 58E12

Published electronically:
May 22, 2000

MathSciNet review:
1661254

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

This paper involves the generalization of minimal surface theory to spaces with singularities. Let be an NPC space, i.e. a metric space of non-positive curvature. We define a (parametric) minimal surface in as a conformal energy minimizing map. Using this definition, many properties of classical minimal surfaces can also be observed for minimal surfaces in this general setting. In particular, we will prove the boundary monotonicity property and the isoperimetric inequality for minimal surfaces in .

**[ABN]**A. D. Aleksandrov, V. N. Berestovskiĭ, and I. G. Nikolaev,*Generalized Riemannian spaces*, Uspekhi Mat. Nauk**41**(1986), no. 3(249), 3–44, 240 (Russian). MR**854238****[C]**Kevin Corlette,*Archimedean superrigidity and hyperbolic geometry*, Ann. of Math. (2)**135**(1992), no. 1, 165–182. MR**1147961**, 10.2307/2946567**[GS]**Mikhail Gromov and Richard Schoen,*Harmonic maps into singular spaces and 𝑝-adic superrigidity for lattices in groups of rank one*, Inst. Hautes Études Sci. Publ. Math.**76**(1992), 165–246. MR**1215595****[HL]**Robert Hardt and Fang-Hua Lin,*Harmonic maps into round cones and singularities of nematic liquid crystals*, Math. Z.**213**(1993), no. 4, 575–593. MR**1231879**, 10.1007/BF03025739**[HK]**W. K. Hayman and P. B. Kennedy,*Subharmonic functions. Vol. I*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. London Mathematical Society Monographs, No. 9. MR**0460672****[J1]**Jürgen Jost,*Equilibrium maps between metric spaces*, Calc. Var. Partial Differential Equations**2**(1994), no. 2, 173–204. MR**1385525**, 10.1007/BF01191341**[J2]**Jürgen Jost,*Convex functionals and generalized harmonic maps into spaces of nonpositive curvature*, Comment. Math. Helv.**70**(1995), no. 4, 659–673. MR**1360608**, 10.1007/BF02566027**[KS1]**Nicholas J. Korevaar and Richard M. Schoen,*Sobolev spaces and harmonic maps for metric space targets*, Comm. Anal. Geom.**1**(1993), no. 3-4, 561–659. MR**1266480**, 10.4310/CAG.1993.v1.n4.a4**[KS2]**Nicholas J. Korevaar and Richard M. Schoen,*Global existence theorems for harmonic maps to non-locally compact spaces*, Comm. Anal. Geom.**5**(1997), no. 2, 333–387. MR**1483983**, 10.4310/CAG.1997.v5.n2.a4**[Me1]**C. Mese.*The Curvature of Minimal Surfaces in Singular Spaces.*to appear in Communications of Analysis and Geometry.**[Me2]**C. Mese.*Minimal Surfaces and Conformal Mappings into Singular Spaces*. Ph.D. thesis. Stanford University, 1996.**[MS]**J. H. Michael and L. M. Simon,*Sobolev and mean-value inequalities on generalized submanifolds of 𝑅ⁿ*, Comm. Pure Appl. Math.**26**(1973), 361–379. MR**0344978****[Mo]**Charles B. Morrey Jr.,*The problem of Plateau on a Riemannian manifold*, Ann. of Math. (2)**49**(1948), 807–851. MR**0027137****[N]**I. G. Nikolaev,*Solution of the Plateau problem in spaces of curvature at most 𝐾*, Sibirsk. Mat. Zh.**20**(1979), no. 2, 345–353, 459 (Russian). MR**530499****[R1]**Y.G. Reshetnyak.*Geometry IV Non-regular Riemann Geometry*. Translated by E. Primrose. Encyclopedia of Mathematical Science, 70. Springer-Berlag, Berlin, 1993.**[R2]**Ju. G. Rešetnjak,*Non-expansive maps in a space of curvature no greater than 𝐾*, Sibirsk. Mat. Ž.**9**(1968), 918–927 (Russian). MR**0244922****[S1]**Tomasz Serbinowski,*Boundary regularity of harmonic maps to nonpositively curved metric spaces*, Comm. Anal. Geom.**2**(1994), no. 1, 139–153. MR**1312682**, 10.4310/CAG.1994.v2.n1.a8**[S2]**T. Serbinowski.*Harmonic Maps into Metric Spaces with Curvature Bounded Above.*Ph.D. thesis. University of Utah, 1995.**[W1]**Michael Wolf,*Harmonic maps from surfaces to 𝐑-trees*, Math. Z.**218**(1995), no. 4, 577–593. MR**1326987**, 10.1007/BF02571924**[W2]**Michael Wolf,*On realizing measured foliations via quadratic differentials of harmonic maps to 𝐑-trees*, J. Anal. Math.**68**(1996), 107–120. MR**1403253**, 10.1007/BF02790206

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
58E12

Retrieve articles in all journals with MSC (1991): 58E12

Additional Information

**Chikako Mese**

Affiliation:
Department of Mathematics, University of Southern California, Los Angeles, California 90089

Address at time of publication:
Department of Mathematics, Connecticut College, New London, Connecticut 06320

Email:
cmes@conncoll.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02481-8

Received by editor(s):
March 24, 1998

Received by editor(s) in revised form:
November 1, 1998

Published electronically:
May 22, 2000

Article copyright:
© Copyright 2000
American Mathematical Society