A sampling theorem on homogeneous manifolds

Author:
Isaac Pesenson

Journal:
Trans. Amer. Math. Soc. **352** (2000), 4257-4269

MSC (2000):
Primary 43A85, 58G03; Secondary 41A15

Published electronically:
April 21, 2000

MathSciNet review:
1707201

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We consider a generalization of entire functions of spherical exponential type and Lagrangian splines on manifolds. An analog of the Paley-Wiener theorem is given. We also show that every spectral entire function on a manifold is uniquely determined by its values on some discrete sets of points.

The main result of the paper is a formula for reconstruction of spectral entire functions from their values on discrete sets using Lagrangian splines.

**1.**John J. Benedetto,*Irregular sampling and frames*, Wavelets, Wavelet Anal. Appl., vol. 2, Academic Press, Boston, MA, 1992, pp. 445–507. MR**1161260****2.**Jeff Cheeger, Mikhail Gromov, and Michael Taylor,*Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds*, J. Differential Geom.**17**(1982), no. 1, 15–53. MR**658471****3.**S. Krein, I. Pesenson,*Interpolation Spaces and Approximation on Lie Groups*, The Voronezh State University, Voronezh, 1990, (Russian).**4.**Pierre Gilles Lemarié,*Base d’ondelettes sur les groupes de Lie stratifiés*, Bull. Soc. Math. France**117**(1989), no. 2, 211–232 (French, with English summary). MR**1015808****5.**J.- L. Lions, E. Magenes,*Non-Homogeneous Boundary Value Problem and Applications*, Springer-Verlag, 1975.**6.**Yu. Lyubarskiĭ and W. R. Madych,*The recovery of irregularly sampled band limited functions via tempered splines*, J. Funct. Anal.**125**(1994), no. 1, 201–222. MR**1297019**, 10.1006/jfan.1994.1122**7.**I. Z. Pesenson,*The Bernstein inequality in representations of Lie groups*, Dokl. Akad. Nauk SSSR**313**(1990), no. 4, 803–806 (Russian); English transl., Soviet Math. Dokl.**42**(1991), no. 1, 87–90. MR**1080635****8.**I. Pesenson,*Reconstruction of Paley-Wiener functions on the Heisenberg group*, Translations of AMS (to appear).**9.**Isaac Pesenson,*Sampling of Paley-Wiener functions on stratified groups*, J. Fourier Anal. Appl.**4**(1998), no. 3, 271–281. MR**1650917**, 10.1007/BF02476027**10.**John Roe,*An index theorem on open manifolds. I, II*, J. Differential Geom.**27**(1988), no. 1, 87–113, 115–136. MR**918459****11.**I. J. Schoenberg,*Cardinal spline interpolation*, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 12. MR**0420078****12.**M. A. Shubin,*Spectral theory of elliptic operators on noncompact manifolds*, Astérisque**207**(1992), 5, 35–108. Méthodes semi-classiques, Vol. 1 (Nantes, 1991). MR**1205177****13.**Robert S. Strichartz,*Analysis of the Laplacian on the complete Riemannian manifold*, J. Funct. Anal.**52**(1983), no. 1, 48–79. MR**705991**, 10.1016/0022-1236(83)90090-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
43A85,
58G03,
41A15

Retrieve articles in all journals with MSC (2000): 43A85, 58G03, 41A15

Additional Information

**Isaac Pesenson**

Affiliation:
Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122

Email:
pesenson@math.temple.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02592-7

Keywords:
Shannon-Whittaker formula,
manifold,
Laplace-Beltrami operator,
spectral entire functions,
Lagrangian splines,
Sobolev spaces

Received by editor(s):
June 17, 1997

Received by editor(s) in revised form:
June 26, 1998

Published electronically:
April 21, 2000

Article copyright:
© Copyright 2000
American Mathematical Society