Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Examples of torsion points on genus two curves

Authors: John Boxall and David Grant
Journal: Trans. Amer. Math. Soc. 352 (2000), 4533-4555
MSC (2000): Primary 11G30, 14H25
Published electronically: June 8, 2000
MathSciNet review: 1621721
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a method that sometimes determines all the torsion points lying on a curve of genus two defined over a number field and embedded in its Jacobian using a Weierstrass point as base point. We then apply this to the examples $y^{2}=x^{5}+x$, $y^{2}=x^{5}+5\,x^{3}+x$, and $y^{2}-y=x^{5}$.

References [Enhancements On Off] (What's this?)

  • [BoMM-B] J.-B. Bost, J.-F. Mestre, L. Moret-Bailly, Calculs explicite en genre 2, Astérisque 183 (1990), 69-106. MR 92g:14018b
  • [B] A. Buium, Geometry of $p$-jets, Duke Math. Jour. 82 (1996), 349-367. MR 97c:14029
  • [Ca] D. Cantor, On the analogue of the division polynomials for hyperelliptic curves, Crelle 447 (1994), 91-145. MR 94m:11071
  • [CasFl] J. W. S. Cassels, E. V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2, Cambridge University Press, 1996. MR 97i:11071
  • [C1] R. F. Coleman, Torsion points on curves and $p$-adic Abelian integrals, Annals of Math. 121 (1985), 111-168. MR 86j:14014
  • [C2] R. F. Coleman, Torsion points on Fermat curves, Composition Math. 58 (1986), 191-208. MR 87k:14019
  • [C3] R. F. Coleman, Ramified torsion points on curves, Duke Math. J. 54 (1987), 615-640. MR 89c:14033
  • [CKR] R. F. Coleman, B. Kaskel, K. A. Ribet, Torsion points on $X_{0}(N)$, in Automorphic Forms, Automorphic Representations, and Arithmetic, Proc. Sympos. Pure Math., vol. 66, part 1, 1999, pp. 27-49. CMP 99:16
  • [CTT] R. F. Coleman, A. Tamagawa, P Tzermias, The cuspidal torsion packet on the Fermat curve, J. Reine Angew. Math. 496 (1998), 73-81. MR 99b:11066
  • [Cr] J. E. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, 1992. MR 93m:11053
  • [DaPh] S. David, P. Philippon, Minorations des hauteurs normalisées de sous-variétés de variétés abéliennes, Cont. Math. 210 (1998), 333-364. MR 98j:11044
  • [D] M. Deuring, Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins, I-IV, Gott. Nach. (1953). MR 15:779d
  • [FK] G. Frey, E. Kani, Curves of genus 2 covering elliptic curves and an arithmetic application, Prog. Math. 89 (1991), 153-175. MR 91k:14014
  • [G1] D. Grant, A proof of quintic reciprocity using the arithmetic of $y^{2}=x^{5}+1/4$, Acta Arith LXXV.4 (1996), 321-337. MR 97b:11083
  • [G2] D. Grant, Units from $5$-torsion on the Jacobian of $y^{2}=x^{5}+1/4$ and the conjectures of Stark and Rubin, J. Number Theory 77 (1999), 227-251. CMP 99:16
  • [G3] D. Grant, Units from $3$- and $4$- torsion on Jacobians of curves of genus $2$, Compositio Math. 95 (1994), 311-320. MR 95j:11053
  • [Gr] R. Greenberg, On the Jacobian variety of some algebraic curves, Compositio Math. 42 (1981), 345-359. MR 82j:14036
  • [H] M. Hindry, Autour d'une conjecture de Serge Lang, Invent. Math. 94 (1988), 575-603. MR 89k:11046
  • [I] J. Igusa, Arithmetic variety of moduli for genus two, Annals of Math. 72 (1960), 612-649. MR 22:5637
  • [Ku] R. Kuhn, Curves of genus 2 with split Jacobian, Trans. AMS 307 (1988), 41-49. MR 89f:14027
  • [L] S. Lang, Division points on curves, Ann. Math. Pura Appl. LXX (1965), 229-234. MR 32:7560
  • [P] A. Pillay, Model theory and diophantine geometry, Bull. Amer. Math. Soc. 34 (1997), 405-422. MR 98h:11164a
  • [R1] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent. Math. 71 (1983), 207-233. MR 84c:14021
  • [R2] M. Raynaud, Sous-variétés d'une variété abélienne et points de torsion, Prog. Math. 35 (1983), 327-352. MR 85k:14022
  • [S1] J.-P. Serre, Abelian $l$-adic representations and elliptic curves, Benjamin, New York, 1968. MR 41:8422
  • [S2] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331. MR 52:8126
  • [Sha] D. Shaulis, Torsion points on the Jacobian of a hyperelliptic image of a Fermat curve, PhD. Thesis, University of Colorado at Boulder (1998).
  • [ShT] G. Shimura, Y. Taniyama, Complex multiplication of Abelian varieties and its applications to number theory, Publ. Math. Soc. Japan No. 6, 1961. MR 23:A2419
  • [Si] J. Silverman, The Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1986. MR 87g:11070
  • [St] H. Stark, The Coates-Wiles theorem revisited, Prog. Math. 36 (1982), 349-362. MR 84c:14039
  • [U] E. Ullmo, Positivité et discrétion des points algébriques de courbes, Annals of Math. (2) 147 (1998), 167-179. MR 99e:14031
  • [W] A. Weil, On a certain type of character of the idele class group, Proc. Int. Symp. Algebraic Number Theory, Kyoto (1955), 1-7. MR 18,720e

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11G30, 14H25

Retrieve articles in all journals with MSC (2000): 11G30, 14H25

Additional Information

John Boxall
Affiliation: CNRS, UPRESA 6081, Département de Mathématiques et de Mécanique, Université de Caen, Boulevard maréchal Juin, B.P. 5186, 14032 Caen cedex, France

David Grant
Affiliation: Department of Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309-0395

Keywords: Curves of genus two, elliptic curves, torsion, Galois representations
Received by editor(s): October 6, 1997
Received by editor(s) in revised form: April 18, 1998
Published electronically: June 8, 2000
Additional Notes: The first author was enjoying the hospitality of the University of Colorado at Boulder while the paper was completed. The second author was supported by NSF DMS–930322 and was enjoying the hospitality of the University of Caen while conducting part of this research
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society