Invariant foliations near normally hyperbolic invariant manifolds for semiflows

Authors:
Peter W. Bates, Kening Lu and Chongchun Zeng

Journal:
Trans. Amer. Math. Soc. **352** (2000), 4641-4676

MSC (2000):
Primary 37D30, 37L45; Secondary 53C12, 37D10, 37K55

Published electronically:
June 14, 2000

MathSciNet review:
1675237

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Let be a compact manifold which is invariant and normally hyperbolic with respect to a semiflow in a Banach space. Then in an -neighborhood of there exist local center-stable and center-unstable manifolds and , respectively. Here we show that and may each be decomposed into the disjoint union of submanifolds (leaves) in such a way that the semiflow takes leaves into leaves of the same collection. Furthermore, each leaf intersects in a single point which determines the asymptotic behavior of all points of that leaf in either forward or backward time.

**[An]**D. V. Anosov,*Geodesic flows on closed Riemann manifolds with negative curvature.*, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967). Translated from the Russian by S. Feder, American Mathematical Society, Providence, R.I., 1969. MR**0242194****[AG]**Bernd Aulbach and Barnabas M. Garay,*Partial linearization for noninvertible mappings*, Z. Angew. Math. Phys.**45**(1994), no. 4, 505–542. MR**1289659**, 10.1007/BF00991895**[BJ]**Peter W. Bates and Christopher K. R. T. Jones,*Invariant manifolds for semilinear partial differential equations*, Dynamics reported, Vol. 2, Dynam. Report. Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989, pp. 1–38. MR**1000974****[BL]**Peter W. Bates and Kening Lu,*A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations*, J. Dynam. Differential Equations**6**(1994), no. 1, 101–145. MR**1262725**, 10.1007/BF02219190**[BLZ1]**Peter W. Bates, Kening Lu, and Chongchun Zeng,*Existence and persistence of invariant manifolds for semiflows in Banach space*, Mem. Amer. Math. Soc.**135**(1998), no. 645, viii+129. MR**1445489**, 10.1090/memo/0645**[BLZ2]**P. W. Bates, K. Lu and C. Zeng,*Invariant Manifolds and Invariant Foliations for Semiflows*, book, in preparation.**[BDL]**Almut Burchard, Bo Deng, and Kening Lu,*Smooth conjugacy of centre manifolds*, Proc. Roy. Soc. Edinburgh Sect. A**120**(1992), no. 1-2, 61–77. MR**1149984**, 10.1017/S0308210500014980**[CHT]**Xu-Yan Chen, Jack K. Hale, and Bin Tan,*Invariant foliations for 𝐶¹ semigroups in Banach spaces*, J. Differential Equations**139**(1997), no. 2, 283–318. MR**1472350**, 10.1006/jdeq.1997.3255**[CLi]**Shui-Nee Chow and Xiao-Biao Lin,*Bifurcation of a homoclinic orbit with a saddle-node equilibrium*, Differential Integral Equations**3**(1990), no. 3, 435–466. MR**1047746****[CLL]**Shui-Nee Chow, Xiao-Biao Lin, and Kening Lu,*Smooth invariant foliations in infinite-dimensional spaces*, J. Differential Equations**94**(1991), no. 2, 266–291. MR**1137616**, 10.1016/0022-0396(91)90093-O**[CL]**Shui-Nee Chow and Kening Lu,*Invariant manifolds and foliations for quasiperiodic systems*, J. Differential Equations**117**(1995), no. 1, 1–27. MR**1320181**, 10.1006/jdeq.1995.1046**[CLM]**Shui-Nee Chow, Kening Lu, and John Mallet-Paret,*Floquet theory for parabolic differential equations*, J. Differential Equations**109**(1994), no. 1, 147–200. MR**1272403**, 10.1006/jdeq.1994.1047**[D1]**Bo Deng,*The Šil′nikov problem, exponential expansion, strong 𝜆-lemma, 𝐶¹-linearization, and homoclinic bifurcation*, J. Differential Equations**79**(1989), no. 2, 189–231. MR**1000687**, 10.1016/0022-0396(89)90100-9**[D2]**Bo Deng,*The existence of infinitely many traveling front and back waves in the FitzHugh-Nagumo equations*, SIAM J. Math. Anal.**22**(1991), no. 6, 1631–1650. MR**1129402**, 10.1137/0522102**[F1]**Neil Fenichel,*Asymptotic stability with rate conditions*, Indiana Univ. Math. J.**23**(1973/74), 1109–1137. MR**0339276****[F2]**Neil Fenichel,*Asymptotic stability with rate conditions. II*, Indiana Univ. Math. J.**26**(1977), no. 1, 81–93. MR**0426056****[F3]**Neil Fenichel,*Geometric singular perturbation theory for ordinary differential equations*, J. Differential Equations**31**(1979), no. 1, 53–98. MR**524817**, 10.1016/0022-0396(79)90152-9**[G]**Robert A. Gardner,*An invariant-manifold analysis of electrophoretic traveling waves*, J. Dynam. Differential Equations**5**(1993), no. 4, 599–606. MR**1250262**, 10.1007/BF01049140**[GS]**I. Gasser and P. Szmolyan,*A geometric singular perturbation analysis of detonation and deflagration waves*, SIAM J. Math. Anal.**24**(1993), no. 4, 968–986. MR**1226859**, 10.1137/0524058**[Ha]**J. Hadamard,*Sur l'iteration et les solutions asymptotiques des equations differentielles*, Bull. Soc. Math. France**29**(1901), 224-228.**[HP]**Morris W. Hirsch and Charles C. Pugh,*Stable manifolds and hyperbolic sets*, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR**0271991****[HPS]**M. W. Hirsch, C. C. Pugh, and M. Shub,*Invariant manifolds*, Lecture Notes in Mathematics, Vol. 583, Springer-Verlag, Berlin-New York, 1977. MR**0501173****[HW]**G. Haller and S. Wiggins,*𝑁-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems*, Arch. Rational Mech. Anal.**130**(1995), no. 1, 25–101. MR**1350402**, 10.1007/BF00375655**[Jo]**C. K. R. T. Jones,*Geometric singular perturbation theory*, C.I.M.E. Lectures (1994).**[JK]**C. K. R. T. Jones and N. Kopell,*Tracking invariant manifolds with differential forms in singularly perturbed systems*, J. Differential Equations**108**(1994), no. 1, 64–88. MR**1268351**, 10.1006/jdeq.1994.1025**[KW]**Gregor Kovačič and Stephen Wiggins,*Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation*, Phys. D**57**(1992), no. 1-2, 185–225. MR**1169620**, 10.1016/0167-2789(92)90092-2**[KP]**U. Kirchgraber and K. J. Palmer,*Geometry in the neighborhood of invariant manifolds of maps and flows and linearization*, Pitman Research Notes in Mathematics Series, vol. 233, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1990. MR**1068954****[Li]**Xiao-Biao Lin,*Shadowing lemma and singularly perturbed boundary value problems*, SIAM J. Appl. Math.**49**(1989), no. 1, 26–54. MR**978824**, 10.1137/0149002**[LMSW]**Y. Li, David W. McLaughlin, Jalal Shatah, and S. Wiggins,*Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation*, Comm. Pure Appl. Math.**49**(1996), no. 11, 1175–1255. MR**1406663**, 10.1002/(SICI)1097-0312(199611)49:11<1175::AID-CPA2>3.3.CO;2-B**[LW]**Charles Li and Stephen Wiggins,*Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations*, Applied Mathematical Sciences, vol. 128, Springer-Verlag, New York, 1997. MR**1475929****[Ll]**Rafael de la Llave,*Invariant manifolds associated to nonresonant spectral subspaces*, J. Statist. Phys.**87**(1997), no. 1-2, 211–249. MR**1453740**, 10.1007/BF02181486**[Lu1]**Kening Lu,*A Hartman-Grobman theorem for scalar reaction-diffusion equations*, J. Differential Equations**93**(1991), no. 2, 364–394. MR**1125224**, 10.1016/0022-0396(91)90017-4**[Lu2]**K. Lu,*Structural stability for time periodic parabolic equations*, US-Chinese Conference on Differential Equations and their Applications, edited by P. Bates, et al. (1997), 207-214. CMP**98:08****[Ly]**A. M. Liapunov,*Problème géneral de la stabilité du mouvement*, Annals Math. Studies**17**(1947).**[Mn]**Ricardo Mañé,*Lyapounov exponents and stable manifolds for compact transformations*, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 522–577. MR**730286**, 10.1007/BFb0061433**[Ru]**David Ruelle,*Characteristic exponents and invariant manifolds in Hilbert space*, Ann. of Math. (2)**115**(1982), no. 2, 243–290. MR**647807**, 10.2307/1971392**[Sm]**S. Smale,*Differentiable dynamical systems*, Bull. Amer. Math. Soc.**73**(1967), 747-817.**[Sz]**P. Szmolyan,*Analysis of a singularly perturbed traveling wave problem*, SIAM J. Appl. Math.**52**(1992), no. 2, 485–493. MR**1154784**, 10.1137/0152027**[Te]**D. Terman,*The transition from bursting to continuous spiking in excitable membrane models*, J. Nonlinear Sci.**2**(1992), no. 2, 135–182. MR**1169590**, 10.1007/BF02429854**[W]**Stephen Wiggins,*Normally hyperbolic invariant manifolds in dynamical systems*, Applied Mathematical Sciences, vol. 105, Springer-Verlag, New York, 1994. With the assistance of György Haller and Igor Mezić. MR**1278264**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
37D30,
37L45,
53C12,
37D10,
37K55

Retrieve articles in all journals with MSC (2000): 37D30, 37L45, 53C12, 37D10, 37K55

Additional Information

**Peter W. Bates**

Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602

Email:
peter@math.byu.edu

**Kening Lu**

Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602

Email:
klu@math.byu.edu

**Chongchun Zeng**

Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012

Email:
zengch@math1.cims.nyu.edu

DOI:
https://doi.org/10.1090/S0002-9947-00-02503-4

Received by editor(s):
December 18, 1996

Received by editor(s) in revised form:
June 5, 1998

Published electronically:
June 14, 2000

Additional Notes:
The first author was partially supported by NSF grant DMS-9622785 and the Isaac Newton Institute

The second author was partially supported by NSF grant DMS-9622853

The third author was partially supported by the Isaac Newton Institute

Article copyright:
© Copyright 2000
American Mathematical Society