Invariant foliations near normally hyperbolic invariant manifolds for semiflows
Authors:
Peter W. Bates, Kening Lu and Chongchun Zeng
Journal:
Trans. Amer. Math. Soc. 352 (2000), 46414676
MSC (2000):
Primary 37D30, 37L45; Secondary 53C12, 37D10, 37K55
Published electronically:
June 14, 2000
MathSciNet review:
1675237
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a compact manifold which is invariant and normally hyperbolic with respect to a semiflow in a Banach space. Then in an neighborhood of there exist local centerstable and centerunstable manifolds and , respectively. Here we show that and may each be decomposed into the disjoint union of submanifolds (leaves) in such a way that the semiflow takes leaves into leaves of the same collection. Furthermore, each leaf intersects in a single point which determines the asymptotic behavior of all points of that leaf in either forward or backward time.
 [An]
D.
V. Anosov, Geodesic flows on closed Riemann manifolds with negative
curvature., Proceedings of the Steklov Institute of Mathematics, No.
90 (1967). Translated from the Russian by S. Feder, American Mathematical
Society, Providence, R.I., 1969. MR 0242194
(39 #3527)
 [AG]
Bernd
Aulbach and Barnabas
M. Garay, Partial linearization for noninvertible mappings, Z.
Angew. Math. Phys. 45 (1994), no. 4, 505–542.
MR
1289659 (95k:58018), http://dx.doi.org/10.1007/BF00991895
 [BJ]
Peter
W. Bates and Christopher
K. R. T. Jones, Invariant manifolds for semilinear partial
differential equations, Dynamics reported, Vol.\ 2, Dynam. Report.
Ser. Dynam. Systems Appl., vol. 2, Wiley, Chichester, 1989,
pp. 1–38. MR 1000974
(90g:58017)
 [BL]
Peter
W. Bates and Kening
Lu, A HartmanGrobman theorem for the CahnHilliard and phasefield
equations, J. Dynam. Differential Equations 6 (1994),
no. 1, 101–145. MR 1262725
(94m:35280), http://dx.doi.org/10.1007/BF02219190
 [BLZ1]
Peter
W. Bates, Kening
Lu, and Chongchun
Zeng, Existence and persistence of invariant manifolds for
semiflows in Banach space, Mem. Amer. Math. Soc. 135
(1998), no. 645, viii+129. MR 1445489
(99b:58210), http://dx.doi.org/10.1090/memo/0645
 [BLZ2]
P. W. Bates, K. Lu and C. Zeng, Invariant Manifolds and Invariant Foliations for Semiflows, book, in preparation.
 [BDL]
Almut
Burchard, Bo
Deng, and Kening
Lu, Smooth conjugacy of centre manifolds, Proc. Roy. Soc.
Edinburgh Sect. A 120 (1992), no. 12, 61–77.
MR
1149984 (93c:58197), http://dx.doi.org/10.1017/S0308210500014980
 [CHT]
XuYan
Chen, Jack
K. Hale, and Bin
Tan, Invariant foliations for 𝐶¹ semigroups in Banach
spaces, J. Differential Equations 139 (1997),
no. 2, 283–318. MR 1472350
(98m:47109), http://dx.doi.org/10.1006/jdeq.1997.3255
 [CLi]
ShuiNee
Chow and XiaoBiao
Lin, Bifurcation of a homoclinic orbit with a saddlenode
equilibrium, Differential Integral Equations 3
(1990), no. 3, 435–466. MR 1047746
(91g:58201)
 [CLL]
ShuiNee
Chow, XiaoBiao
Lin, and Kening
Lu, Smooth invariant foliations in infinitedimensional
spaces, J. Differential Equations 94 (1991),
no. 2, 266–291. MR 1137616
(92k:58210), http://dx.doi.org/10.1016/00220396(91)90093O
 [CL]
ShuiNee
Chow and Kening
Lu, Invariant manifolds and foliations for quasiperiodic
systems, J. Differential Equations 117 (1995),
no. 1, 1–27. MR 1320181
(96b:34064), http://dx.doi.org/10.1006/jdeq.1995.1046
 [CLM]
ShuiNee
Chow, Kening
Lu, and John
MalletParet, Floquet theory for parabolic differential
equations, J. Differential Equations 109 (1994),
no. 1, 147–200. MR 1272403
(95c:35116), http://dx.doi.org/10.1006/jdeq.1994.1047
 [D1]
Bo
Deng, The Šil′nikov problem, exponential expansion,
strong 𝜆lemma, 𝐶¹linearization, and homoclinic
bifurcation, J. Differential Equations 79 (1989),
no. 2, 189–231. MR 1000687
(90k:58161), http://dx.doi.org/10.1016/00220396(89)901009
 [D2]
Bo
Deng, The existence of infinitely many traveling front and back
waves in the FitzHughNagumo equations, SIAM J. Math. Anal.
22 (1991), no. 6, 1631–1650. MR 1129402
(92k:35141), http://dx.doi.org/10.1137/0522102
 [F1]
Neil
Fenichel, Asymptotic stability with rate conditions, Indiana
Univ. Math. J. 23 (1973/74), 1109–1137. MR 0339276
(49 #4036)
 [F2]
Neil
Fenichel, Asymptotic stability with rate conditions. II,
Indiana Univ. Math. J. 26 (1977), no. 1, 81–93.
MR
0426056 (54 #14002)
 [F3]
Neil
Fenichel, Geometric singular perturbation theory for ordinary
differential equations, J. Differential Equations 31
(1979), no. 1, 53–98. MR 524817
(80m:58032), http://dx.doi.org/10.1016/00220396(79)901529
 [G]
Robert
A. Gardner, An invariantmanifold analysis of electrophoretic
traveling waves, J. Dynam. Differential Equations 5
(1993), no. 4, 599–606. MR 1250262
(94i:34096), http://dx.doi.org/10.1007/BF01049140
 [GS]
I.
Gasser and P.
Szmolyan, A geometric singular perturbation analysis of detonation
and deflagration waves, SIAM J. Math. Anal. 24
(1993), no. 4, 968–986. MR 1226859
(94h:35206), http://dx.doi.org/10.1137/0524058
 [Ha]
J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901), 224228.
 [HP]
Morris
W. Hirsch and Charles
C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis
(Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math.
Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
(42 #6872)
 [HPS]
M.
W. Hirsch, C.
C. Pugh, and M.
Shub, Invariant manifolds, Lecture Notes in Mathematics, Vol.
583, SpringerVerlag, BerlinNew York, 1977. MR 0501173
(58 #18595)
 [HW]
G.
Haller and S.
Wiggins, 𝑁pulse homoclinic orbits in perturbations of
resonant Hamiltonian systems, Arch. Rational Mech. Anal.
130 (1995), no. 1, 25–101. MR 1350402
(96i:34099), http://dx.doi.org/10.1007/BF00375655
 [Jo]
C. K. R. T. Jones, Geometric singular perturbation theory, C.I.M.E. Lectures (1994).
 [JK]
C.
K. R. T. Jones and N.
Kopell, Tracking invariant manifolds with differential forms in
singularly perturbed systems, J. Differential Equations
108 (1994), no. 1, 64–88. MR 1268351
(95c:34085), http://dx.doi.org/10.1006/jdeq.1994.1025
 [KW]
Gregor
Kovačič and Stephen
Wiggins, Orbits homoclinic to resonances, with an application to
chaos in a model of the forced and damped sineGordon equation, Phys.
D 57 (1992), no. 12, 185–225. MR 1169620
(93f:58153), http://dx.doi.org/10.1016/01672789(92)900922
 [KP]
U.
Kirchgraber and K.
J. Palmer, Geometry in the neighborhood of invariant manifolds of
maps and flows and linearization, Pitman Research Notes in Mathematics
Series, vol. 233, Longman Scientific & Technical, Harlow;
copublished in the United States with John Wiley & Sons, Inc., New
York, 1990. MR
1068954 (91k:58115)
 [Li]
XiaoBiao
Lin, Shadowing lemma and singularly perturbed boundary value
problems, SIAM J. Appl. Math. 49 (1989), no. 1,
26–54. MR
978824 (90a:34126), http://dx.doi.org/10.1137/0149002
 [LMSW]
Y.
Li, David
W. McLaughlin, Jalal
Shatah, and S.
Wiggins, Persistent homoclinic orbits for a perturbed nonlinear
Schrödinger equation, Comm. Pure Appl. Math. 49
(1996), no. 11, 1175–1255. MR 1406663
(98d:35208), http://dx.doi.org/10.1002/(SICI)10970312(199611)49:11<1175::AIDCPA2>3.3.CO;2B
 [LW]
Charles
Li and Stephen
Wiggins, Invariant manifolds and fibrations for perturbed nonlinear
Schrödinger equations, Applied Mathematical Sciences,
vol. 128, SpringerVerlag, New York, 1997. MR 1475929
(99e:58165)
 [Ll]
Rafael
de la Llave, Invariant manifolds associated to nonresonant spectral
subspaces, J. Statist. Phys. 87 (1997), no. 12,
211–249. MR 1453740
(98f:58038), http://dx.doi.org/10.1007/BF02181486
 [Lu1]
Kening
Lu, A HartmanGrobman theorem for scalar reactiondiffusion
equations, J. Differential Equations 93 (1991),
no. 2, 364–394. MR 1125224
(92k:35147), http://dx.doi.org/10.1016/00220396(91)900174
 [Lu2]
K. Lu, Structural stability for time periodic parabolic equations, USChinese Conference on Differential Equations and their Applications, edited by P. Bates, et al. (1997), 207214. CMP 98:08
 [Ly]
A. M. Liapunov, Problème géneral de la stabilité du mouvement, Annals Math. Studies 17 (1947).
 [Mn]
Ricardo
Mañé, Lyapounov exponents and stable manifolds for
compact transformations, Geometric dynamics (Rio de Janeiro, 1981)
Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983,
pp. 522–577. MR 730286
(85j:58126), http://dx.doi.org/10.1007/BFb0061433
 [Ru]
David
Ruelle, Characteristic exponents and invariant manifolds in Hilbert
space, Ann. of Math. (2) 115 (1982), no. 2,
243–290. MR
647807 (83j:58097), http://dx.doi.org/10.2307/1971392
 [Sm]
S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747817.
 [Sz]
P.
Szmolyan, Analysis of a singularly perturbed traveling wave
problem, SIAM J. Appl. Math. 52 (1992), no. 2,
485–493. MR 1154784
(92m:82141), http://dx.doi.org/10.1137/0152027
 [Te]
D.
Terman, The transition from bursting to continuous spiking in
excitable membrane models, J. Nonlinear Sci. 2
(1992), no. 2, 135–182. MR 1169590
(93g:92008), http://dx.doi.org/10.1007/BF02429854
 [W]
Stephen
Wiggins, Normally hyperbolic invariant manifolds in dynamical
systems, Applied Mathematical Sciences, vol. 105,
SpringerVerlag, New York, 1994. With the assistance of György Haller
and Igor Mezić. MR 1278264
(95g:58163)
 [An]
 D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Proc. of the Steklov Inst. of Math., 90, 1967, English translation, Amer. Math. Soc., Providence, R.I. 1969. MR 39:3527
 [AG]
 B. Aulbach and B. M. Garay, Partial linearization for noninvertible mappings, Z. Angew. Math. Phys. 45 (1994), 505542. MR 95k:58018
 [BJ]
 P. W. Bates and C. K. R. T. Jones, Invariant manifolds for semilinear partial differential equations, Dynamics Reported 2 (1989), 138, Wiley. MR 90g:58017
 [BL]
 P. W. Bates and K. Lu, A HartmanGrobman theorem for the CahnHilliard and phasefield equations, J. Dynamics and Differential Equations 6 (1994), 101145. MR 94m:35280
 [BLZ1]
 P. W. Bates, K. Lu and C. Zeng, Existence and persistence of invariant manifolds for semiflows in Banach spaces, Mem. Amer. Math. Soc. 135 (1998). MR 99b:58210
 [BLZ2]
 P. W. Bates, K. Lu and C. Zeng, Invariant Manifolds and Invariant Foliations for Semiflows, book, in preparation.
 [BDL]
 A. Burchard, B. Deng and K. Lu, Smooth conjugacy of centre manifolds, Proceedings of the Royal Society of Edingburgh 120A (1992), 6177. MR 93c:58197
 [CHT]
 XY. Chen, J. K. Hale and B. Tan, Invariant foliations for semigroups in Banach spaces, J. Differential Equations 139 (1997), 283318. MR 98m:47109
 [CLi]
 SN. Chow and XB. Lin, Bifurcation of a homoclinic orbit with a saddlenode equilibrium, Differential Integral Equations 3 (1990), 435466. MR 91g:58201
 [CLL]
 SN. Chow, XB. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces, J. Differential Equations 94 (1991), 266291. MR 92k:58210
 [CL]
 SN. Chow and K. Lu, Invariant manifolds and foliations for quasiperiodic systems, J. Differential Equations 117 (1995), 127. MR 96b:34064
 [CLM]
 SN. Chow, K. Lu and J. MalletParet, Floquet theory for parabolic equations, J. Differential Equations 109 (1994), 147200. MR 95c:35116
 [D1]
 B. Deng, The Sil'nikov problem, exponential expansion, strong lemma, linearization, and homoclinic bifurcation, J. Differential Equations 82 (1989), 156173. MR 90k:58161
 [D2]
 B. Deng, The existence of infinitely many traveling front and back waves in the FitzHughNagumo equations, SIAM J. Math. Anal. 22 (1991), 16311650. MR 92k:35141
 [F1]
 N. Fenichel, Asymptotic stability with rate conditions, Indiana Univ. Math. Journal 23 (1974), 11091137. MR 49:4036
 [F2]
 N. Fenichel, Asymptotic stability with rate conditions. II, Indiana Univ. Math. Journal 26 (1977), 8193. MR 54:14002
 [F3]
 N. Fenichel, Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations 31 (1979), 5398. MR 80m:58032
 [G]
 R. A. Gardner, An invariantmanifold analysis of electrophoretic traveling waves, J. Dynamics and Differential Equations 5 (1993), 599606. MR 94i:34096
 [GS]
 I. Gasser and P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves, SIAM J. Math. Anal. 24 (1993), 968986. MR 94h:35206
 [Ha]
 J. Hadamard, Sur l'iteration et les solutions asymptotiques des equations differentielles, Bull. Soc. Math. France 29 (1901), 224228.
 [HP]
 M. W. Hirsch and C. C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Sympos. Pure Math. 14 (1970), 133163. MR 42:6872
 [HPS]
 M. W. Hirsch, C. C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, vol. 583, SpringerVerlag, New York, 1977. MR 58:18595
 [HW]
 G. Haller and S. Wiggins, Npulse homoclinic orbits in perturbations of resonant Hamiltonian systems, Arch. Rat. Mech. Anal. 130 (1995), 25101. MR 96i:34099
 [Jo]
 C. K. R. T. Jones, Geometric singular perturbation theory, C.I.M.E. Lectures (1994).
 [JK]
 C. Jones and N. Kopell, Tracking invariant manifolds with differential forms in singularly perturbed systems, J. Diff. Eq. 108 (1994), 6488. MR 95c:34085
 [KW]
 G. Kovacic and S. Wiggins, Orbits homoclinic to resonances with an application to chaos in a model of the forced and damped sineGordon equation, PhysicaD 57 (1992), 185225. MR 93f:58153
 [KP]
 U. Kirchgraber and K. J. Palmer, Geometry in the neighborhood of invariant manifolds of maps and flows and linearization, Pitman Research Notes in Mathematics Series, Longman Scientific and Technical, 1990, John Wiley and Sons, Inc., New York. MR 91k:58115
 [Li]
 XB. Lin, Shadowing lemma and singularly perturbed boundary value problems, SIAM J. Appl. Math. 49 (1989), 2654. MR 90a:34126
 [LMSW]
 Y. Li, D. W. McLaughlin, J. Shatah and S. Wiggins, Persistent homoclinic orbits for a perturbed nonlinear Schrödinger equation, Comm. Pure Appl. Math 49 (1996), 11751255. MR 98d:35208
 [LW]
 Y. Li and S. Wiggins, Invariant manifolds and fibrations for perturbed nonlinear Schrödinger equations, Applied Mathematical Sciences, 128, SpringerVerlag, New York, 1997. MR 99e:58165
 [Ll]
 R. de la Llave, Invariant manifolds associated to nonresonant spectral subspaces, J. Statist. Phys. 87 (1997), 211249. MR 98f:58038
 [Lu1]
 K. Lu, A HartmanGrobman theorem for scalar reactiondiffusion equations, J. Differential Equations 93 (1991), 364394. MR 92k:35147
 [Lu2]
 K. Lu, Structural stability for time periodic parabolic equations, USChinese Conference on Differential Equations and their Applications, edited by P. Bates, et al. (1997), 207214. CMP 98:08
 [Ly]
 A. M. Liapunov, Problème géneral de la stabilité du mouvement, Annals Math. Studies 17 (1947).
 [Mn]
 R. Mañé, Lyapunov exponents and stable manifolds for compact transformations, Geometric Dynamics, Lecture Notes in Math., vol. 1007, SpringerVerlag, New York, 1985, pp. 522577. MR 85j:58126
 [Ru]
 D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of Math. 115 (1982), 243290. MR 83j:58097
 [Sm]
 S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747817.
 [Sz]
 P. Szmolyan, Transversal heteroclinic and homoclinic orbits in singular perturbed problems, J. Differential Equations 92 (1991), 252281. MR 92m:82141
 [Te]
 D. Terman, The transition from bursting to continuous spiking in excitable membrane models, J. Nonlinear Sci. 2 (1992), 135182. MR 93g:92008
 [W]
 S. Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, Applied Mathematical Sciences, 105, SpringerVerlag, New York, 1994. MR 95g:58163
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
37D30,
37L45,
53C12,
37D10,
37K55
Retrieve articles in all journals
with MSC (2000):
37D30,
37L45,
53C12,
37D10,
37K55
Additional Information
Peter W. Bates
Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email:
peter@math.byu.edu
Kening Lu
Affiliation:
Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email:
klu@math.byu.edu
Chongchun Zeng
Affiliation:
Courant Institute of Mathematical Sciences, New York University, New York, New York 10012
Email:
zengch@math1.cims.nyu.edu
DOI:
http://dx.doi.org/10.1090/S0002994700025034
PII:
S 00029947(00)025034
Received by editor(s):
December 18, 1996
Received by editor(s) in revised form:
June 5, 1998
Published electronically:
June 14, 2000
Additional Notes:
The first author was partially supported by NSF grant DMS9622785 and the Isaac Newton Institute
The second author was partially supported by NSF grant DMS9622853
The third author was partially supported by the Isaac Newton Institute
Article copyright:
© Copyright 2000
American Mathematical Society
