Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Skein modules and the noncommutative torus


Authors: Charles Frohman and Razvan Gelca
Journal: Trans. Amer. Math. Soc. 352 (2000), 4877-4888
MSC (1991): Primary 57M27, 58B32, 47L87
DOI: https://doi.org/10.1090/S0002-9947-00-02512-5
Published electronically: June 12, 2000
MathSciNet review: 1675190
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We prove that the Kauffman bracket skein algebra of the cylinder over a torus is a canonical subalgebra of the noncommutative torus. The proof is based on Chebyshev polynomials. As an application, we describe the structure of the Kauffman bracket skein module of a solid torus as a module over the algebra of the cylinder over a torus, and recover a result of Hoste and Przytycki about the skein module of a lens space. We establish simple formulas for Jones-Wenzl idempotents in the skein algebra of a cylinder over a torus, and give a straightforward computation of the $n$-th colored Kauffman bracket of a torus knot, evaluated in the plane or in an annulus.


References [Enhancements On Off] (What's this?)

  • 1. C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 31(1992), 685-699. MR 94a:57010
  • 2. D. Bullock, Rings of $SL_2{\mathbb C}$-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72(1997), 521-542. MR 98k:57008
  • 3. D. Bullock, C. Frohman and J. Kania-Bartoszynska, Topological Interpretations of Lattice Gauge Field Theory, Commun. Math. Phys. 198 (1998), 47-81. CMP 99:05
  • 4. D. Bullock, C. Frohman and J. Kania-Bartoszynska, Skein Homology, Canad. Math. Bull., 41(1998), 140-144. MR 99g:57006
  • 5. D. Bullock, J. Przytycki, Multiplicative structure of Kauffman bracket skein module quantizations, to appear in Proc. Amer. Math. Soc.
  • 6. A. Connes, Noncommutative Geometry, Academic Press Inc., San Diego, CA, 1994. MR 95j:46063
  • 7. R. Gelca, Topological quantum field theory with corners based on the Kauffman bracket, Comment. Math. Helv., 72(1997), 216-243. MR 98k:57027
  • 8. J. Hoste, J. Przytycki, The $(2,\infty)$-skein module of lens spaces; a generalization of the Jones polynomial, J. Knot Theor. Ramif., 2(1993), 321-333. MR 95b:57010
  • 9. L. Kauffman, State models and the Jones polynomial, Topology 26(1987), 395-401. MR 88f:57006
  • 10. L. Kauffman, S. Lins, Temperly-Lieb Recoupling Theory and Invariants of 3-Manifolds, Annals of Mathematics Studies, No. 134, Princeton University Press, Princeton, New Jersey, 1994. MR 95c:57027
  • 11. W. B. R. Lickorish, The skein method for three-manifold invariants, J. Knot Theor. Ramif., 2(1993), 171-194. MR 94g:57006
  • 12. J. H. Przytycki, Skein modules of 3-manifolds, Bull. Pol. Acad. Sci. 39 (1991) 91-100. MR 94g:57011
  • 13. J. H. Przytycki, Symmetric knots and billiard knots, Ideal Knots (A. Stasiak et al., eds.), Ser. Knots Everything, vol. 19, World Sci. Publ., Singapore, 1998, pp. 374-414. CMP 98:17
  • 14. J. H. Przytycki and A. Sikora, Skein algebra of a group, Banach Center Publ. 42, Polish Acad. Sci., Warsaw, 1998, pp. 297-306. MR 99e:57019
  • 15. M. Rieffel, Deformation quantization of Heisenberg manifolds, Commun. Math. Phys. 122(1989), 531-562. MR 90e:46060
  • 16. J. Roberts, Skeins and mapping class groups, Math. Proc. Cambridge Phil. Soc., 115(1994), 53-77. MR 94m:57035
  • 17. P. Sallenave, Structure of the Kauffman bracket skein algebra of $T^2\times I$, J. Knot Theory Ramif. 8 (1999), 367-372. CMP 99:13
  • 18. A. Sikora, A New Geometric Method in the theory of $SL_n$-representations of groups, preprint (math.RT/9806016).
  • 19. V. G. Turaev, Algebras of loops on surfaces, algebras of knots, and quantization, Braid Group, Knot Theory and Statistical Mechanics (C. N. Yang and M. L. Ge, eds.), Adv. Ser. Math. Phys., vol. 9, World Sci. Publ., Singapore, 1989, pp. 59-95. MR 92i:57011
  • 20. A. Weinstein, Symplectic groupoids, geometric quantization, and irrational rotation algebras, in Symplectic geometry, groupoids, and integrable systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 281-290. MR 92h:46103

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 57M27, 58B32, 47L87

Retrieve articles in all journals with MSC (1991): 57M27, 58B32, 47L87


Additional Information

Charles Frohman
Affiliation: Department of Mathematics, University of Iowa, Iowa City, Iowa 52242
Email: frohman@math.uiowa.edu

Razvan Gelca
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, and Institute of Mathematics of the Romanian Academy, Bucharest, Romania
Email: rgelca@math.lsa.umich.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02512-5
Keywords: Kauffman bracket, skein modules, noncommutative geometry
Received by editor(s): June 15, 1998
Received by editor(s) in revised form: January 20, 1999
Published electronically: June 12, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society