Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Polynomials that are positive on an interval

Authors: Victoria Powers and Bruce Reznick
Journal: Trans. Amer. Math. Soc. 352 (2000), 4677-4692
MSC (1991): Primary 14Q20; Secondary 26C99, 68W30
Published electronically: June 14, 2000
MathSciNet review: 1707203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


This paper discusses representations of polynomials that are positive on intervals of the real line. An elementary and constructive proof of the following is given: If $h(x), p(x) \in \mathbb{R}[x]$ such that $\{ \alpha \in \mathbb{R} \mid h(\alpha) \geq 0 \} = [-1,1]$ and $p(x) > 0$ on $[-1,1]$, then there exist sums of squares $s(x), t(x) \in \mathbb{R}[x]$ such that $p(x) = s(x) + t(x) h(x)$. Explicit degree bounds for $s$ and $t$ are given, in terms of the degrees of $p$ and $h$ and the location of the roots of $p$. This is a special case of Schmüdgen's Theorem, and extends classical results on representations of polynomials positive on a compact interval. Polynomials positive on the non-compact interval $[0,\infty)$ are also considered.

References [Enhancements On Off] (What's this?)

  • 1. S. Bernstein, Sur la représentation des polynômes positifs, Soobshch. Kharkov matem. ob-va, ser. 2, 14 (1915), 227-228.
  • 2. Peter Borwein and Tamás Erdélyi, Polynomials and polynomial inequalities, Graduate Texts in Mathematics, vol. 161, Springer-Verlag, New York, 1995. MR 1367960
  • 3. Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
  • 4. Tamás Erdélyi, Estimates for the Lorentz degree of polynomials, J. Approx. Theory 67 (1991), no. 2, 187–198. MR 1133059,
  • 5. T. Erdélyi and J. Szabados, On polynomials with positive coefficients, J. Approx. Theory 54 (1988), no. 1, 107–122. MR 951032,
  • 6. J. Franel, solution, Intermèd. des math. 1 (1894), 253-254.
  • 7. E. Goursat, solution, Intermèd. des math. 1 (1894), 251.
  • 8. David Handelman, Representing polynomials by positive linear functions on compact convex polyhedra, Pacific J. Math. 132 (1988), no. 1, 35–62. MR 929582
  • 9. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 2nd ed., Cambridge Univ. Press, 1952. MR 13:727e
  • 10. F. Hausdorff, Summationsmethoden und Momentfolgen I, Math. Zeit. 9 (1921), 74-109.
  • 11. C. Hermite, problem, Intermèd. des math. 1 (1894), 65-66.
  • 12. S. Karlin and L. S. Shapley, Geometry of Moment Spaces, Memoirs of the Amer. Math. Soc, 12, 1953. MR 15:512c
  • 13. Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
  • 14. Jesús A. de Loera and Francisco Santos, An effective version of Pólya’s theorem on positive definite forms, J. Pure Appl. Algebra 108 (1996), no. 3, 231–240. MR 1384003,
  • 15. J. A. de Loera and F. Santos, Correction to An effective version of Pòlya theorem on positive definite forms, J. Pure Appl. Alg., to appear.
  • 16. Charles A. Micchelli and Allan Pinkus, Some remarks on nonnegative polynomials on polyhedra, Probability, statistics, and mathematics, Academic Press, Boston, MA, 1989, pp. 163–186. MR 1031284
  • 17. G. Pólya, Über positive Darstellung von Polynomen Vierteljschr, Naturforsch. Ges. Zürich 73 (1928 141-145, in Collected Papers 2 (1974), MIT Press, 309-313.
  • 18. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer-Verlag, New York, 1976.
  • 19. V. Powers and B. Reznick, A new bound for Pólya's Theorem with applications to polynomials positive on polyhedra, to appear in Proceedings of the MEGA 2000 conference.
  • 20. B. Reznick, Some Concrete Aspects of Hilbert's 17th Problem, to appear in RAGOS Proceedings, Contemp. Math. 253 (2000), 251-272.
  • 21. J. Sadier, solution, Intermèd. des math. 1 (1894), 251-253.
  • 22. C. Scheiderer, Sums of squares of regular functions on real algebraic varieties, to appear in Trans. Amer. Math. Soc. CMP 99:09
  • 23. Konrad Schmüdgen, The 𝐾-moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), no. 2, 203–206. MR 1092173,
  • 24. Gilbert Stengle, Complexity estimates for the Schmüdgen Positivstellensatz, J. Complexity 12 (1996), no. 2, 167–174. MR 1398323,

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 14Q20, 26C99, 68W30

Retrieve articles in all journals with MSC (1991): 14Q20, 26C99, 68W30

Additional Information

Victoria Powers
Affiliation: Department of Mathematics, Emory University, Atlanta, Georgia 30322

Bruce Reznick
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois

Received by editor(s): January 14, 1999
Published electronically: June 14, 2000
Additional Notes: The second author was supported in part by NSF Grant DMS 95-00507
Article copyright: © Copyright 2000 American Mathematical Society