Manifolds with minimal radial curvature bounded from below and big volume

Author:
Valery Marenich

Journal:
Trans. Amer. Math. Soc. **352** (2000), 4451-4468

MSC (1991):
Primary 53C20, 53C21

Published electronically:
June 14, 2000

MathSciNet review:
1779483

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

We prove that a convergence in the Gromov-Hausdorff distance of manifolds with minimal radial curvature bounded from below by 1 to the standard sphere is equivalent to a volume convergence.

**[C]**Jeff Cheeger,*Critical points of distance functions and applications to geometry*, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1–38. MR**1168042**, 10.1007/BFb0094288**[Cl1]**Teodora Cosma,*Généralisations métriques des espaces absolus*, Proceedings of 23rd Conference on Geometry and Topology (Cluj-Napoca, 1993), “Babeş-Bolyai” Univ., Cluj-Napoca, 1994, pp. 40–46 (French). MR**1367748****[Cl2]**I. Gottlieb and S. Vacaru,*A. Moor’s tensorial integration in generalized Lagrange spaces*, Lagrange and Finsler geometry, Fund. Theories Phys., vol. 76, Kluwer Acad. Publ., Dordrecht, 1996, pp. 209–216. MR**1378661****[Cl3]**Tobias H. Colding,*Ricci curvature and volume convergence*, Ann. of Math. (2)**145**(1997), no. 3, 477–501. MR**1454700**, 10.2307/2951841**[GP]**Karsten Grove and Peter Petersen,*A radius sphere theorem*, Invent. Math.**112**(1993), no. 3, 577–583. MR**1218324**, 10.1007/BF01232447**[GS]**Karsten Grove and Katsuhiro Shiohama,*A generalized sphere theorem*, Ann. of Math. (2)**106**(1977), no. 2, 201–211. MR**0500705****[M1]**Yoshiroh Machigashira,*Manifolds with pinched radial curvature*, Proc. Amer. Math. Soc.**118**(1993), no. 3, 979–985. MR**1136236**, 10.1090/S0002-9939-1993-1136236-0**[M2]**Yoshiroh Machigashira,*Complete open manifolds of non-negative radial curvature*, Pacific J. Math.**165**(1994), no. 1, 153–160. MR**1285569****[MM]**V. Marenich, S. J. X. Mendonça,*Manifolds with minimal radial curvature bounded from below and big radius*, Indiana Univ. Math. J.**48**(1999). CMP**2000:04****[MS]**Yoshiroh Machigashira and Katsuhiro Shiohama,*Riemannian manifolds with positive radial curvature*, Japan. J. Math. (N.S.)**19**(1993), no. 2, 419–430. MR**1265660****[OSY]**B. N. Apanasov,*Bending and stamping deformations of hyperbolic manifolds*, Ann. Global Anal. Geom.**8**(1990), no. 1, 3–12. MR**1075235**, 10.1007/BF00055014**[Y1]**Neculai Papaghiuc,*Some results on normal semi-invariant submanifolds with semi-flat normal connection in Sasakian space forms*, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.)**32(80)**(1988), no. 3, 263–272. MR**983911****[Y2]**Takao Yamaguchi,*Collapsing and pinching under a lower curvature bound*, Ann. of Math. (2)**133**(1991), no. 2, 317–357. MR**1097241**, 10.2307/2944340

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (1991):
53C20,
53C21

Retrieve articles in all journals with MSC (1991): 53C20, 53C21

Additional Information

**Valery Marenich**

Affiliation:
IMECC - UNICAMP, Campinas, Brazil

Email:
marenich@ime.unicamp.br

DOI:
https://doi.org/10.1090/S0002-9947-00-02634-9

Keywords:
Sphere theorems,
radial minimal curvature

Received by editor(s):
February 3, 1999

Published electronically:
June 14, 2000

Additional Notes:
Supported by FAPERJ and CNPq

Article copyright:
© Copyright 2000
American Mathematical Society