Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Center manifolds for smooth invariant manifolds


Authors: Shui-Nee Chow, Weishi Liu and Yingfei Yi
Journal: Trans. Amer. Math. Soc. 352 (2000), 5179-5211
MSC (1991): Primary 34C30, 34C35, 34D35
DOI: https://doi.org/10.1090/S0002-9947-00-02443-0
Published electronically: June 27, 2000
MathSciNet review: 1650077
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract:

We study dynamics of flows generated by smooth vector fields in ${\mathbb{R} }^n$ in the vicinity of an invariant and closed smooth manifold $Y$. By applying the Hadamard graph transform technique, we show that there exists an invariant manifold (called a center manifold of $Y$) based on the information of the linearization along $Y$, which contains every locally bounded solution and is persistent under small perturbations.


References [Enhancements On Off] (What's this?)

  • 1. Afraimovich, V., Chow, S.-N. and Liu, W. (1995). Lorenz-type attractors from co-dimension one bifurcations. J. Dyn. Diff. Eqn. 7, 375-407. MR 96c:58097
  • 2. Afraimovich, V., and Shilnikov, L. (1974). On Some Global Bifurcations Connected with the Disappearance of a Fixed Point of Saddle-node Type. Doklady Akad. Nauk. SSSR 219, 1281-1285 (in Russian). English translation in Sov. Math. Doklady.
  • 3. Ball, J.M. (1973). Saddle point analysis for an ordinary differential equation in a Banach space and an application to dynamic buckling of a beam. Nonlinear Elasticity (R. W. Dickey, ed.), Academic Press, New York, 93-160. MR 48:3342
  • 4. Bates, P.W. and Jones, C.K.R.T. (1989). Invariant manifolds for semilinear partial differential equations. Dyn. Reported 2, 1-38, Wiley. MR 90g:58017
  • 5. Bates, P., Lu, K. and Zeng, C. Existence and persistence of invariant manifolds for semiflows in Banach space. Mem. Amer. Math. Soc. to appear. MR 97:11
  • 6. Bronstein, I. U. and Kopanskii, A. Ya. Smooth Invariant Manifolds and Normal Forms. World Scientific Series on Nonlinear Science. Series A, 7, 1994. of center manifolds. Proc. Roy. Soc. Edinburgh. 120 A, 61-77. MR 96d:58123
  • 7. Carr, J. Applications of Center Manifold Theory. Applied Mathematical Sciences, 35, Springer-Verlag, New York, 1981. MR 83g:34039
  • 8. Chafee, N. (1971). A bifurcation problem for functional differential equations of finitely retarded type. J. Math. Anal. Appl. 35, 312-348. MR 49:10997
  • 9. Chen, X.-Y., Hale, J. and Tan, B. (1997). Invariant foliations of $C^1$ semigroups in Banach spaces. J. Diff. Eqn. 139, 293-318. MR 98m:47109
  • 10. Chenciner, A. and Iooss, G. (1979). Bifurcations des tores invariants. Arch. Rat. Mech. Anal. 71, 301-306. MR 81c:58049
  • 11. Chow, S.-N. and Hale, J. Method of Bifurcation Theory. Springer-Verlag, 1982. MR 84e:58019
  • 12. Chow, S-N., Li, C. and Wang, D. Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, 1994. MR 95i:58161
  • 13. Chow, S-N. and Lu, K. (1988). $C^k$ Center unstable manifolds. Proc. Roy. Soc. Edinburgh. 79, 189-231. MR 90a:58148
  • 14. Chow, S-N. and Lu, K. (1995). Invariant manifolds and foliations for quasiperiodic systems. J. Diff. Eqn. 117, 1-27. MR 96b:34064
  • 15. Chow, S-N. and Yi, Y. (1994). Center manifold and stability for skew-product flows. J. Dyn. Diff. Eqn. 6, 543-582. MR 95k:58142
  • 16. Diliberto, S.P. (1960). Perturbation theorems for periodic surfaces, I. Rend. Circ. Mat. Palermo, Ser. 2, 9, 265-299. MR 26:420a
  • 17. Dumoritier, F., Roussarie, R., Sotomayor, J. and Zoladek, H. Bifurcations of planar vector fields. Lect. Notes in Math. No. 1480, Springer-Verlag Berlin Heidelberg, 1991. MR 93f:58165
  • 18. Fenichel, N. (1971). Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193-226. MR 44:4313
  • 19. Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqn. 31, 53-98. MR 80m:58032
  • 20. Foias, C., Sell, G. and Temam, R. (1988). Inertial manifolds for nonlinear evolutionary equations. J. Diff. Eqn. 73, 309-353. MR 89e:58020
  • 21. Guckenheimer, J. and Holmes, P. Nonlinear Oscillators, Dynamical Systems and Bifurcations of Vector Fields. Springer-Verlag, 1985. MR 85f:58002
  • 22. Hadamard, J. (1901). Sur Líteration et les solutions asymptotiques des equations differentielles. Bull. Soc. Math. France 29, 224-228.
  • 23. Hale, J. (1961). Integral manifolds of perturbed differential systems. Ann. Math., 73, 496-531. MR 23:A1108
  • 24. Hale, J. Ordinary Differential Equations. John Wiley, New York, 1969. MR 54:7918
  • 25. Henry, D. Geometric Theory of Semilinear Parabolic Equations. Lect. Notes in Math. No. 840, Spring-Verlag, Berlin, 1983. MR 83j:35084
  • 26. Hirsch, M., Pugh, C. and Shub, M. Invariant Manifolds. Lect. Notes in Math. No. 583, Springer-Verlag, New York, 1976. MR 58:18595
  • 27. Homburg, A. (1996). Global aspects of homoclinic bifurcations of vector fields. Mem. Amer. Math. Soc. 121, no. 578. MR 96i:58125
  • 28. Johnson, R.A. (1978). Concerning a theorem of Sell. J. Diff. Eqn. 30, 324-339. MR 80b:34058
  • 29. Jones, C.K.R.T. and Kopell, N. (1994). Tracking invariant manifolds with differential forms in singularly perturbed systems. J. Diff. Eqn. 107, 1-25. MR 95c:34085
  • 30. Kelley, A. (1967). The stable, center-stable, center, center-unstable, unstable manifolds. J. Diff. Eqn. 3, 546-570. MR 36:4096
  • 31. Kurzweil, J. (1968). Invariant manifolds of differential systems. Differencialnye Uravnenija $4$ (part $1$), 785-797. MR 49:9342
  • 32. Li, Y., McLaughlin, D., Shatah, J. and Wiggins, S. (1996). Persistent homoclinic orbits for perturbed nonlinear Schrödinger equations. Comm. Pure Appl. Math. 49, 1175-1255. MR 98d:35208
  • 33. Lyapunov, A.M. (1947). Problème géneral de la stabilité du mouvement. Annals Math. Studies 17, Princeton, N.J. (originally published in Russian, 1892).
  • 34. Mãné, R. (1977). Persistent manifolds are normally hyperbolic. Trans. Amer. Math. Soc. Vol 246, 261-283. MR 80c:58019
  • 35. Mielke, A. (1988). Reduction of quasilinear elliptic equations in cylindrical domains with applications. Math. Methods Appl. Soc. 10, 51-66. MR 89d:35063
  • 36. Nash, J. (1956). The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20-63. MR 17:782b
  • 37. Palmer, K. (1987). On the stability of the center manifold. J. of Appl. Math. Phys. (ZAMP) 38, 273-278. linearization theorem. J. Math. Anal. Appl. 41, 753-758. MR 89h:34047
  • 38. Perron, O. (1928). Über stabilität und asymptotisches verhalten der integrale von differentialgleichungssystemen. Math. Z. 29, 129-160.
  • 39. Pliss, V.A. (1964). Principal reduction in the theory of stability of motion. Izv. Akad. Nauk. SSSR Mat. Ser. 28, 1297-1324. MR 32:7861
  • 40. Pliss, V.A. and Sell, G. (1996). Approximation dynamics and the stability of invariant sets. IMA Preprint Series #1393.
  • 41. Rybakowski, K.P. (1993). An abstract approach to smoothness of invariant manifolds. Applicable Anal. 49, 119-150. MR 95c:58027
  • 42. Sacker, R. (1965). A perturbation theorem for invariant Riemannian manifolds. Differential Equations and Dynamical Systems, Proc. Symp. Diff. Eqn. Dyn. Syst., 43-54, Academic Press, New York, 1967. MR 36:1784
  • 43. Sacker, R. and Sell, G. (1978). A spectral theory for linear differential systems. J. Diff. Eqn. 27, 320-358. MR 58:18604
  • 44. Sakamoto, K. (1994). Estimates on the strength of exponential dichotomies and application to integral manifolds. J. Diff. Eqn. 107, 259-279. MR 95b:34052
  • 45. Sandstede, B. (1993). Verzweigungstheorie homokliner verdopplungen. Report No. 7, Institut für Angewandte Analysis und Stochastik, Germany.
  • 46. Selgrade, J. (1975). Isolated invariant sets for flows on vector bundles. Trans. Amer. Math. Soc. 203, 359-390. MR 51:4322
  • 47. Shub, M. Global Stability of Dynamical Systems. Springer-Verlag, 1986. MR 87m:58086
  • 48. Sijbrand, J. (1985). Properties of center manifolds. Trans. Amer. Math. Soc. 289, 431-469. MR 86i:58099
  • 49. Smale, S. (1967). Differentiable Dynamical Systems. Bull. Amer. Math. Soc. 73, 747-817. MR 37:3598
  • 50. Spivak, M. A Comprehensive Introduction to Differential Geometry, I, II, III Publish or Perish, 1979. MR 42:2369; MR 51:8962; MR 42:6726
  • 51. Vanderbauwhede, A. (1989). Center manifolds, normal forms and elementary bifurcations. Dyn. Reported, 2, 89-169.
  • 52. Vanderbauwhede, A. and Iooss, G. (1990). Center manifold theory in infinite dimensions. Dyn. Report. (N. S.) 1, 125-163. MR 93f:58174
  • 53. Vanderbauwhede, A. and van Gils, S.A. (1987). Center manifolds and contractions on a scale of Banach spaces. J. Funct. Anal. 72, 209-224. MR 88d:58085
  • 54. Whitney, H. (1936). Differential manifolds. Ann. Math., (2)37, 645-680.
  • 55. Wiggins, S. Normally Hyperbolic Invariant Manifolds in Dynamical Systems. Applied Math. Sciences 105, Springer-Verlag, 1994. MR 95g:58163
  • 56. Yi, Y. (1993). A generalized integral manifold theorem. J. Diff. Eqn. 102, 153-187. MR 94c:58148

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 34C30, 34C35, 34D35

Retrieve articles in all journals with MSC (1991): 34C30, 34C35, 34D35


Additional Information

Shui-Nee Chow
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0190; Department of Mathematics, National University of Singapore, Singapore 119262
Email: chow@math.gatech.edu

Weishi Liu
Affiliation: Department of Mathematics, University of Missouri-Columbia, Columbia, Missouri 65211
Address at time of publication: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
Email: wliu@math.ukans.edu

Yingfei Yi
Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0190
Email: yi@math.gatech.edu

DOI: https://doi.org/10.1090/S0002-9947-00-02443-0
Keywords: Center manifold, graph transform, overflowing
Received by editor(s): June 24, 1996
Received by editor(s) in revised form: March 20, 1998
Published electronically: June 27, 2000
Article copyright: © Copyright 2000 American Mathematical Society

American Mathematical Society